mirror of https://github.com/alibaba/MNN.git
756 lines
29 KiB
C++
756 lines
29 KiB
C++
//
|
|
// OpenCLBackend.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/core/OpenCLBackend.hpp"
|
|
#include "MNN_generated.h"
|
|
|
|
#include "core/TensorUtils.hpp"
|
|
#include "shape/SizeComputer.hpp"
|
|
#include <map>
|
|
#include <mutex>
|
|
#include <thread>
|
|
#include "core/Macro.h"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
CLRuntime::CLRuntime(const Backend::Info& info){
|
|
mInfo = info;
|
|
|
|
BackendConfig::PrecisionMode precision = BackendConfig::Precision_Normal;
|
|
BackendConfig::PowerMode power = BackendConfig::Power_Normal;
|
|
if (nullptr != mInfo.user) {
|
|
precision = mInfo.user->precision;
|
|
power = mInfo.user->power;
|
|
}
|
|
|
|
// Shader precision
|
|
mOpenCLRuntime.reset(new OpenCLRuntime(precision, mInfo.gpuMode));
|
|
mPrecision = precision;
|
|
}
|
|
|
|
CLRuntime::~CLRuntime() {
|
|
mOpenCLRuntime = nullptr;
|
|
}
|
|
|
|
bool CLRuntime::onSetCache(const void* buffer, size_t size) {
|
|
mOpenCLRuntime->setCache(std::make_pair(buffer, size));
|
|
return true;
|
|
}
|
|
|
|
std::pair<const void*, size_t> CLRuntime::onGetCache() {
|
|
return mOpenCLRuntime->makeCache();
|
|
}
|
|
|
|
Backend* CLRuntime::onCreate(const BackendConfig* config) const {
|
|
// FIXME: Use config info
|
|
return new OpenCLBackend(this);
|
|
}
|
|
|
|
void CLRuntime::onGabageCollect(int level) {
|
|
//nothing now
|
|
}
|
|
|
|
bool CLRuntime::isCLRuntimeError() {
|
|
return mCLRuntimeError;
|
|
}
|
|
|
|
std::map<std::pair<OpType, GpuMemObject>, OpenCLBackend::Creator*>* gCreator() {
|
|
static std::once_flag once;
|
|
static std::map<std::pair<OpType, GpuMemObject>, OpenCLBackend::Creator*>* creators = nullptr;
|
|
std::call_once(once, [&]() { creators = new std::map<std::pair<OpType, GpuMemObject>, OpenCLBackend::Creator*>; });
|
|
return creators;
|
|
};
|
|
|
|
OpenCLBackend::OpenCLBackend(const CLRuntime *runtime)
|
|
: Backend(MNN_FORWARD_OPENCL) {
|
|
|
|
mCLRuntime = runtime;
|
|
mOpenCLRuntime = mCLRuntime->mOpenCLRuntime;
|
|
mPrecision = mCLRuntime->mPrecision;
|
|
|
|
if(mOpenCLRuntime.get()){
|
|
if(mOpenCLRuntime->isCreateError() == true) {
|
|
mIsCreateError = true;
|
|
}
|
|
|
|
mStaticImagePool.reset(new ImagePool(mOpenCLRuntime->context()));
|
|
mStaticBufferPool.reset(new BufferPool(mOpenCLRuntime->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR));
|
|
mImagePool.reset(new ImagePool(mOpenCLRuntime->context()));
|
|
mBufferPool.reset(new BufferPool(mOpenCLRuntime->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR));
|
|
}
|
|
}
|
|
|
|
OpenCLBackend::~OpenCLBackend() {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("enter OpenCLBackend::~OpenCLBackend \n");
|
|
#endif
|
|
mImagePool = nullptr;
|
|
mBufferPool = nullptr;
|
|
mStaticImagePool = nullptr;
|
|
mStaticBufferPool = nullptr;
|
|
}
|
|
|
|
OpenCLRuntime* OpenCLBackend::getOpenCLRuntime() {
|
|
return mOpenCLRuntime.get();
|
|
}
|
|
|
|
bool OpenCLBackend::onAcquireBuffer(const Tensor* nativeTensor, StorageType storageType) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start OpenCLBackend::onAcquireBuffer !\n");
|
|
#endif
|
|
|
|
auto tensorShape = OpenCL::tensorShapeFormat(nativeTensor);
|
|
|
|
int N = tensorShape.at(0);
|
|
int H = tensorShape.at(1);
|
|
int W = tensorShape.at(2);
|
|
int C = tensorShape.at(3);
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("OpenCLBackend::onAcquireBuffer: [%d, %d, %d, %d], [%d, %d]\n", N, H, W, C, (int)imageWidth,
|
|
(int)imageHeight);
|
|
#endif
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
if(mOpenCLRuntime->getGpuMemType() == BUFFER)
|
|
{
|
|
size_t imageWidth = (size_t) ROUND_UP(UP_DIV(C, 4), 2) * ROUND_UP(W, 4);//C-round to 8,W-round to 4, for memory alloc
|
|
size_t imageHeight = (size_t)N * H;
|
|
cl_channel_type dataType = CL_FLOAT;
|
|
//when support and want fp16, use half datatype
|
|
if (getOpenCLRuntime()->isSupportedFP16()) {
|
|
dataType = CL_HALF_FLOAT;
|
|
}
|
|
|
|
if (storageType == DYNAMIC_SEPERATE) {
|
|
auto buffer = mBufferPool->alloc(imageWidth*imageHeight*4*
|
|
(dataType==CL_HALF_FLOAT?sizeof(half_float::half):sizeof(float)), true);
|
|
((Tensor*)nativeTensor)->buffer().device = (uint64_t)buffer;
|
|
return true;
|
|
}
|
|
if (storageType == DYNAMIC) {
|
|
auto buffer = mBufferPool->alloc(imageWidth*imageHeight*4*
|
|
(dataType==CL_HALF_FLOAT?sizeof(half_float::half):sizeof(float)));
|
|
((Tensor*)nativeTensor)->buffer().device = (uint64_t)buffer;
|
|
return true;
|
|
}
|
|
MNN_ASSERT(storageType == STATIC);
|
|
auto buffer = mStaticBufferPool->alloc(imageWidth*imageHeight*4*
|
|
(dataType==CL_HALF_FLOAT?sizeof(half_float::half):sizeof(float)));
|
|
((Tensor*)nativeTensor)->buffer().device = (uint64_t)buffer; // fix
|
|
return true;
|
|
}
|
|
else
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|
|
{
|
|
size_t imageWidth = (size_t) (UP_DIV(C, 4) * W);//image mode only C pack to 4
|
|
size_t imageHeight = (size_t)N * H;
|
|
cl_channel_type dataType = CL_HALF_FLOAT;
|
|
//when user want high precision, use float datatype
|
|
if (mPrecision == BackendConfig::Precision_High) {
|
|
dataType = CL_FLOAT;
|
|
}
|
|
|
|
if (storageType == DYNAMIC_SEPERATE) {
|
|
auto image = mImagePool->alloc(imageWidth, imageHeight, dataType, true);
|
|
((Tensor*)nativeTensor)->buffer().device = (uint64_t)image; // fix
|
|
return true;
|
|
}
|
|
if (storageType == DYNAMIC) {
|
|
auto image = mImagePool->alloc(imageWidth, imageHeight, dataType);
|
|
((Tensor*)nativeTensor)->buffer().device = (uint64_t)image; // fix
|
|
return true;
|
|
}
|
|
MNN_ASSERT(storageType == STATIC);
|
|
auto image = mStaticImagePool->alloc(imageWidth, imageHeight, dataType);
|
|
((Tensor*)nativeTensor)->buffer().device = (uint64_t)image; // fix
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool OpenCLBackend::onReleaseBuffer(const Tensor* nativeTensor, StorageType storageType) {
|
|
if(nativeTensor->getType().code == halide_type_int && nativeTensor->getType().bits == 8){
|
|
return true;
|
|
}
|
|
if (storageType == DYNAMIC_SEPERATE) {
|
|
return true;
|
|
}
|
|
|
|
if(mOpenCLRuntime->getGpuMemType() == BUFFER) {
|
|
auto buffer = (cl::Buffer*)nativeTensor->deviceId();
|
|
if (storageType == DYNAMIC) {
|
|
mBufferPool->recycle(buffer);
|
|
return true;
|
|
}
|
|
if (storageType == STATIC) {
|
|
mStaticBufferPool->recycle(buffer, true);
|
|
}
|
|
return true;
|
|
} else {
|
|
auto image = (cl::Image*)nativeTensor->deviceId();
|
|
if (storageType == DYNAMIC) {
|
|
mImagePool->recycle(image);
|
|
return true;
|
|
}
|
|
if (storageType == STATIC) {
|
|
mStaticImagePool->recycle(image, true);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool OpenCLBackend::onClearBuffer() {
|
|
mImagePool->clear();
|
|
mBufferPool->clear();
|
|
return true;
|
|
}
|
|
std::pair<float, bool> OpenCLBackend::onMeasure(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op) {
|
|
auto creators = gCreator();
|
|
auto iter = creators->find(std::make_pair(op->type(), mOpenCLRuntime->getGpuMemType()));
|
|
if (iter == creators->end()) {
|
|
return std::make_pair(0.0f, false);
|
|
}
|
|
const float defaultScheduleTime = 0.05f;
|
|
// FIXME: Compute in future
|
|
auto flops = 0.0f;
|
|
auto computeFlops = mOpenCLRuntime->flops();
|
|
return std::make_pair(defaultScheduleTime + flops / 1024.0f / computeFlops * 1000.0f, true);
|
|
}
|
|
|
|
Execution* OpenCLBackend::onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start OpenCLBackend::onCreate \n");
|
|
#endif
|
|
auto creators = gCreator();
|
|
auto iter = creators->find(std::make_pair(op->type(), mOpenCLRuntime->getGpuMemType()));
|
|
|
|
if (iter == creators->end()) {
|
|
#if 0//close log
|
|
if (nullptr != op->name()) {
|
|
MNN_PRINT("Don't support type %s memObject:%d, %s\n", EnumNameOpType(op->type()), mOpenCLRuntime->getGpuMemType(), op->name()->c_str());
|
|
} else {
|
|
MNN_PRINT("Don't support type %s memObject:%d\n", EnumNameOpType(op->type()), mOpenCLRuntime->getGpuMemType());
|
|
}
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
if(mOpenCLRuntime->getGpuMemType() == IMAGE) {
|
|
auto maxImageSize = mOpenCLRuntime->getMaxImage2DSize();
|
|
bool valid = true;
|
|
for (auto t : inputs) {
|
|
auto tensorShape = OpenCL::tensorShapeFormat(t);
|
|
int imageHeight = tensorShape[0] * tensorShape[1];
|
|
int imageWidth = tensorShape[2] * UP_DIV(tensorShape[3], 4);
|
|
if (imageHeight > maxImageSize.at(0) || imageWidth > maxImageSize.at(1)) {
|
|
valid = false;
|
|
break;
|
|
}
|
|
|
|
//input in raster not used, origin instead
|
|
auto des = TensorUtils::getDescribe(t)->regions;
|
|
for(auto region : des)
|
|
{
|
|
auto tensor = region.origin;
|
|
auto tensorShape = OpenCL::tensorShapeFormat(tensor);
|
|
int originHeight = tensorShape[0] * tensorShape[1];
|
|
int originWidth = tensorShape[2] * UP_DIV(tensorShape[3], 4);
|
|
if (originHeight > maxImageSize.at(0) || originWidth > maxImageSize.at(1)) {
|
|
valid = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (auto t : outputs) {
|
|
auto tensorShape = OpenCL::tensorShapeFormat(t);
|
|
int imageHeight = tensorShape[0] * tensorShape[1];
|
|
int imageWidth = tensorShape[2] * UP_DIV(tensorShape[3], 4);
|
|
if (imageHeight > maxImageSize.at(0) || imageWidth > maxImageSize.at(1)) {
|
|
valid = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!valid) {
|
|
#if 0//close log
|
|
for (auto t : inputs) {
|
|
auto tensorShape = OpenCL::tensorShapeFormat(t);
|
|
MNN_PRINT("input n:%d, h:%d, w:%d, c:%d\n", tensorShape[0], tensorShape[1], tensorShape[2], tensorShape[3]);
|
|
}
|
|
for (auto t : outputs) {
|
|
auto tensorShape = OpenCL::tensorShapeFormat(t);
|
|
MNN_PRINT("output n:%d, h:%d, w:%d, c:%d\n", tensorShape[0], tensorShape[1], tensorShape[2], tensorShape[3]);
|
|
}
|
|
MNN_PRINT("beyond cl_image creat size! fallback to cpu backend\n");
|
|
#endif
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
auto exe = iter->second->onCreate(inputs, outputs, op, this);
|
|
if (NULL == exe) {
|
|
#if 0//close log
|
|
if (nullptr != op->name()) {
|
|
MNN_PRINT("The Creator Don't support type %s, memObject:%d, %s\n", MNN::EnumNameOpType(op->type()), mOpenCLRuntime->getGpuMemType(), op->name()->c_str());
|
|
} else {
|
|
MNN_PRINT("The Creator Don't support type %s, memObject:%d,\n", EnumNameOpType(op->type()), mOpenCLRuntime->getGpuMemType());
|
|
}
|
|
#endif
|
|
return NULL;
|
|
}
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("End OpenCLBackend::onCreate \n");
|
|
#endif
|
|
return exe;
|
|
}
|
|
|
|
void OpenCLBackend::onResizeBegin() {
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
if(mOpenCLRuntime->getGpuMemType() == BUFFER)
|
|
{
|
|
std::set<std::string> buildOptions;
|
|
//when input or output need buffer2image transformation, open macro BUFFER_IMAGE_IO_TRANS
|
|
//because cpu input and output are fp32
|
|
buildOptions.emplace("-DBUFFER_FORMAT_INP_TRANS");
|
|
mNCHWBufferToNC4HW4BufferInp = mOpenCLRuntime->buildKernel("buffer_convert_buf", "nchw_buffer_to_nc4hw4_buffer", buildOptions);
|
|
mNHWCBufferToNC4HW4BufferInp = mOpenCLRuntime->buildKernel("buffer_convert_buf", "nhwc_buffer_to_nc4hw4_buffer", buildOptions);
|
|
mNC4HW4BufferToNC4HW4BufferInp = mOpenCLRuntime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nc4hw4_buffer", buildOptions);
|
|
|
|
buildOptions.clear();
|
|
buildOptions.emplace("-DBUFFER_FORMAT_OUT_TRANS");
|
|
|
|
mNC4HW4BufferToNHWCBufferOut = mOpenCLRuntime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nhwc_buffer", buildOptions);
|
|
mNC4HW4BufferToNCHWBufferOut = mOpenCLRuntime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nchw_buffer", buildOptions);
|
|
mNC4HW4BufferToNC4HW4BufferOut = mOpenCLRuntime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nc4hw4_buffer", buildOptions);
|
|
}
|
|
else
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|
|
{
|
|
std::set<std::string> buildOptions;
|
|
//when input or output need buffer2image transformation, open macro BUFFER_IMAGE_IO_TRANS
|
|
//because cpu input and output are fp32
|
|
buildOptions.emplace("-DBUFFER_IMAGE_IO_TRANS");
|
|
mNC4HW4BufferToImageFloat = mOpenCLRuntime->buildKernel("buffer_to_image", "nc4hw4_buffer_to_image", buildOptions);
|
|
mNCHWBufferToImageFloat = mOpenCLRuntime->buildKernel("buffer_to_image", "nchw_buffer_to_image", buildOptions);
|
|
mNHWCBufferToImageFloat = mOpenCLRuntime->buildKernel("buffer_to_image", "nhwc_buffer_to_image", buildOptions);
|
|
mImageToNC4HW4BufferFloat = mOpenCLRuntime->buildKernel("buffer_to_image", "image_to_nc4hw4_buffer", buildOptions);
|
|
mImageToNHWCBufferFloat = mOpenCLRuntime->buildKernel("buffer_to_image", "image_to_nhwc_buffer", buildOptions);
|
|
mImageToNCHWBufferFloat = mOpenCLRuntime->buildKernel("buffer_to_image", "image_to_nchw_buffer", buildOptions);
|
|
}
|
|
|
|
mOpenCLRuntime->setCommandQueueProfileEnable();
|
|
}
|
|
|
|
void OpenCLBackend::onResizeEnd() {
|
|
#ifndef ENABLE_OPENCL_TIME_PROFILER
|
|
mOpenCLRuntime->setCommandQueueProfileDisable();
|
|
#endif
|
|
}
|
|
|
|
void OpenCLBackend::onExecuteBegin() const {
|
|
mOpenCLRuntime->mQueueCount = 0;
|
|
mOpenCLRuntime->mKernelTime = 0;
|
|
}
|
|
|
|
void OpenCLBackend::onExecuteEnd() const {
|
|
mOpenCLRuntime->mQueueCount = 0;
|
|
}
|
|
|
|
|
|
bool OpenCLBackend::isCreateError() const {
|
|
return mIsCreateError;
|
|
}
|
|
|
|
void OpenCLBackend::_allocHostBuffer(int length) const {
|
|
MNN_ASSERT(length > 0);
|
|
if (nullptr != mHostBuffer.second && length <= mHostBuffer.first) {
|
|
return;
|
|
}
|
|
mHostBuffer.first = length;
|
|
mHostBuffer.second.reset(
|
|
new cl::Buffer(mOpenCLRuntime->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, length));
|
|
}
|
|
|
|
void OpenCLBackend::copyFromDeviceInt8(const Tensor* srcTensor, const Tensor* dstTensor) const{
|
|
std::vector<int> bufferShape = MNN::OpenCL::tensorShapeFormat(dstTensor);
|
|
|
|
|
|
auto needSize = dstTensor->size();
|
|
auto hostPtr = dstTensor->host<int8_t>();
|
|
auto DeviceBuffer = (cl::Buffer*)srcTensor->deviceId();
|
|
cl_int error = CL_SUCCESS;
|
|
|
|
#ifndef MNN_OCL_QUANT_DUMP
|
|
error = mOpenCLRuntime->commandQueue().enqueueReadBuffer(*DeviceBuffer, CL_TRUE, 0, needSize, hostPtr);
|
|
MNN_ASSERT(error == 0);
|
|
#else//for dump test
|
|
int8_t* tmpPtr = (int8_t *)malloc(needSize);
|
|
error = mOpenCLRuntime->commandQueue().enqueueReadBuffer(*DeviceBuffer, CL_TRUE, 0, needSize, tmpPtr);
|
|
MNN_ASSERT(error == 0);
|
|
int C_4 = (bufferShape[3]+3)/4;
|
|
for(int n=0; n<bufferShape[0]; n++) {
|
|
for(int c=0; c<bufferShape[3]; c++) {
|
|
for(int h=0; h<bufferShape[1]; h++) {
|
|
for(int w=0; w<bufferShape[2]; w++) {
|
|
hostPtr[n*bufferShape[3]*bufferShape[1]*bufferShape[2] + c*bufferShape[1]*bufferShape[2] + h*bufferShape[2] + w] =
|
|
tmpPtr[n*C_4*bufferShape[1]*bufferShape[2]*4 + (c/4)*bufferShape[1]*bufferShape[2]*4 + h*bufferShape[2]*4 + w*4 + c%4];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(tmpPtr != nullptr) {
|
|
free(tmpPtr);
|
|
tmpPtr = nullptr;
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
MNN_PRINT("total kernel time:%d us\n", (int)mOpenCLRuntime->mKernelTime);
|
|
#endif
|
|
}
|
|
|
|
void OpenCLBackend::copyToDeviceInt8(const Tensor* srcTensor, const Tensor* dstTensor) const{
|
|
auto needSize = srcTensor->size();
|
|
auto hostPtr = srcTensor->host<int8_t>();
|
|
cl_int error = CL_SUCCESS;
|
|
auto DeviceBuffer = (cl::Buffer*)dstTensor->deviceId();
|
|
mOpenCLRuntime->commandQueue().enqueueWriteBuffer(*DeviceBuffer, CL_TRUE, 0, needSize, hostPtr);
|
|
}
|
|
|
|
void OpenCLBackend::copyFromDevice(const Tensor* srcTensor, const Tensor* dstTensor) const{
|
|
std::vector<int> bufferShape = MNN::OpenCL::tensorShapeFormat(srcTensor);
|
|
MNN::Tensor interBuffer(0, Tensor::TENSORFLOW);
|
|
interBuffer.buffer().dimensions = bufferShape.size();
|
|
for (int i = 0; i < bufferShape.size(); i++) {
|
|
interBuffer.buffer().dim[i].extent = bufferShape.at(i);
|
|
}
|
|
auto needSize = dstTensor->size();
|
|
|
|
|
|
void* hostPtr;
|
|
void* tmpPtr;
|
|
if(dstTensor->getType().code == halide_type_int) {
|
|
if(dstTensor->getType().bits == 8){
|
|
needSize *= 4;
|
|
hostPtr = malloc(needSize);
|
|
} else if(dstTensor->getType().bits == 32){
|
|
hostPtr = malloc(needSize);
|
|
} else {
|
|
MNN_PRINT("opencl input datatype not support, bit:%d\n", dstTensor->getType().bits);
|
|
MNN_ASSERT(false);
|
|
}
|
|
} else if(dstTensor->getType().code == halide_type_uint){
|
|
if(dstTensor->getType().bits == 8){
|
|
needSize *= 4;
|
|
hostPtr = malloc(needSize);
|
|
} else if(dstTensor->getType().bits == 32){
|
|
hostPtr = malloc(needSize);
|
|
} else {
|
|
MNN_PRINT("opencl input datatype not support, bit:%d\n", dstTensor->getType().bits);
|
|
MNN_ASSERT(false);
|
|
}
|
|
} else {
|
|
hostPtr = dstTensor->host<float>();
|
|
}
|
|
|
|
_allocHostBuffer(needSize);
|
|
interBuffer.buffer().device = (uint64_t)mHostBuffer.second.get();
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
if(mOpenCLRuntime->getGpuMemType() == BUFFER)
|
|
{
|
|
MNN_DATA_FORMAT data_format = TensorUtils::getDescribe(dstTensor)->dimensionFormat;
|
|
switch (data_format) {
|
|
case MNN_DATA_FORMAT_NHWC:
|
|
OpenCL::convertNC4HW4BufferToNHWCBuffer(srcTensor, &interBuffer,
|
|
*const_cast<cl::Kernel*>(&mNC4HW4BufferToNHWCBufferOut), mOpenCLRuntime.get(), true);
|
|
break;
|
|
case MNN_DATA_FORMAT_NCHW:
|
|
OpenCL::convertNC4HW4BufferToNCHWBuffer(srcTensor, &interBuffer,
|
|
*const_cast<cl::Kernel*>(&mNC4HW4BufferToNCHWBufferOut), mOpenCLRuntime.get(), true);
|
|
break;
|
|
case MNN_DATA_FORMAT_NC4HW4:
|
|
OpenCL::convertNC4HW4BufferToNC4HW4Buffer(srcTensor, &interBuffer,
|
|
*const_cast<cl::Kernel*>(&mNC4HW4BufferToNC4HW4BufferOut), mOpenCLRuntime.get(), true);
|
|
break;
|
|
default:
|
|
MNN_PRINT("output data format not support!\n");
|
|
break;
|
|
}
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
mOpenCLRuntime->commandQueue().finish();
|
|
{
|
|
AUTOTIME;
|
|
mOpenCLRuntime->commandQueue().enqueueReadBuffer(*mHostBuffer.second, CL_TRUE, 0, needSize, hostPtr);
|
|
}
|
|
#else
|
|
mOpenCLRuntime->commandQueue().enqueueReadBuffer(*mHostBuffer.second, CL_TRUE, 0, needSize, hostPtr);
|
|
#endif
|
|
}
|
|
else
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|
|
{
|
|
MNN_DATA_FORMAT data_format = TensorUtils::getDescribe(dstTensor)->dimensionFormat;
|
|
switch (data_format) {
|
|
case MNN_DATA_FORMAT_NHWC:
|
|
OpenCL::convertImageToNHWCBuffer(srcTensor, &interBuffer,
|
|
*const_cast<cl::Kernel*>(&mImageToNHWCBufferFloat), mOpenCLRuntime.get());
|
|
break;
|
|
case MNN_DATA_FORMAT_NCHW:
|
|
OpenCL::convertImageToNCHWBuffer(srcTensor, &interBuffer,
|
|
*const_cast<cl::Kernel*>(&mImageToNCHWBufferFloat), mOpenCLRuntime.get());
|
|
break;
|
|
case MNN_DATA_FORMAT_NC4HW4:
|
|
OpenCL::convertImageToNC4HW4Buffer(
|
|
srcTensor, &interBuffer, *const_cast<cl::Kernel*>(&mImageToNC4HW4BufferFloat), mOpenCLRuntime.get());
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cl_int error = CL_SUCCESS;
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
mOpenCLRuntime->commandQueue().finish();
|
|
{
|
|
AUTOTIME;
|
|
mOpenCLRuntime->commandQueue().enqueueReadBuffer(*mHostBuffer.second, CL_TRUE, 0, needSize, hostPtr);
|
|
}
|
|
#else
|
|
mOpenCLRuntime->commandQueue().enqueueReadBuffer(*mHostBuffer.second, CL_TRUE, 0, needSize, hostPtr);
|
|
#endif
|
|
}
|
|
|
|
if(dstTensor->getType().code == halide_type_int) {
|
|
if(dstTensor->getType().bits == 8){
|
|
tmpPtr = dstTensor->host<int8_t>();
|
|
for(int i=0; i<needSize/4; i++) {
|
|
((int8_t*)tmpPtr)[i] = (int8_t)((float*)hostPtr)[i];
|
|
}
|
|
} else if(dstTensor->getType().bits == 32){
|
|
tmpPtr = dstTensor->host<int32_t>();
|
|
for(int i=0; i<needSize/4; i++) {
|
|
((int32_t*)tmpPtr)[i] = (int32_t)((float*)hostPtr)[i];
|
|
}
|
|
}
|
|
if(hostPtr != nullptr) {
|
|
free(hostPtr);
|
|
hostPtr = nullptr;
|
|
}
|
|
} else if(dstTensor->getType().code == halide_type_uint){
|
|
if(dstTensor->getType().bits == 8){
|
|
tmpPtr = dstTensor->host<uint8_t>();
|
|
for(int i=0; i<needSize/4; i++) {
|
|
((uint8_t*)tmpPtr)[i] = (uint8_t)((float*)hostPtr)[i];
|
|
}
|
|
} else if(dstTensor->getType().bits == 32){
|
|
tmpPtr = dstTensor->host<uint32_t>();
|
|
for(int i=0; i<needSize/4; i++) {
|
|
((uint32_t*)tmpPtr)[i] = (uint32_t)((float*)hostPtr)[i];
|
|
}
|
|
}
|
|
if(hostPtr != nullptr) {
|
|
free(hostPtr);
|
|
hostPtr = nullptr;
|
|
}
|
|
}
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
MNN_PRINT("total kernel time:%d us\n", (int)mOpenCLRuntime->mKernelTime);
|
|
#endif
|
|
}
|
|
void OpenCLBackend::copyToDevice(const Tensor* srcTensor, const Tensor* dstTensor) const{
|
|
std::vector<int> bufferShape = MNN::OpenCL::tensorShapeFormat(srcTensor);
|
|
MNN::Tensor interBuffer(0, Tensor::TENSORFLOW);
|
|
interBuffer.buffer().dimensions = bufferShape.size();
|
|
for (int i = 0; i < bufferShape.size(); i++) {
|
|
interBuffer.buffer().dim[i].extent = bufferShape.at(i);
|
|
}
|
|
|
|
auto needSize = srcTensor->size();
|
|
|
|
void* hostPtr;
|
|
void* tmpPtr;
|
|
if(srcTensor->getType().code == halide_type_int) {
|
|
//Copy maybe slow, TODO
|
|
if(srcTensor->getType().bits == 8){
|
|
tmpPtr = srcTensor->host<int8_t>();
|
|
needSize *= 4;
|
|
hostPtr = malloc(needSize);
|
|
for(int i=0; i<needSize/4; i++) {
|
|
((float*)hostPtr)[i] = (float)((int8_t*)tmpPtr)[i];
|
|
}
|
|
} else if(srcTensor->getType().bits == 32){
|
|
tmpPtr = srcTensor->host<int32_t>();
|
|
hostPtr = malloc(needSize);
|
|
for(int i=0; i<needSize/4; i++) {
|
|
((float*)hostPtr)[i] = (float)((int32_t*)tmpPtr)[i];
|
|
}
|
|
}
|
|
|
|
} else if(srcTensor->getType().code == halide_type_uint){
|
|
//Copy maybe slow, TODO
|
|
if(srcTensor->getType().bits == 8){
|
|
tmpPtr = srcTensor->host<uint8_t>();
|
|
needSize *= 4;
|
|
hostPtr = malloc(needSize);
|
|
for(int i=0; i<needSize/4; i++) {
|
|
((float*)hostPtr)[i] = (float)((uint8_t*)tmpPtr)[i];
|
|
}
|
|
} else if(srcTensor->getType().bits == 32){
|
|
tmpPtr = srcTensor->host<uint32_t>();
|
|
hostPtr = malloc(needSize);
|
|
for(int i=0; i<needSize/4; i++) {
|
|
((float*)hostPtr)[i] = (float)((uint32_t*)tmpPtr)[i];
|
|
}
|
|
}
|
|
} else {
|
|
hostPtr = srcTensor->host<float>();
|
|
}
|
|
|
|
_allocHostBuffer(needSize);
|
|
interBuffer.buffer().device = (uint64_t)mHostBuffer.second.get();
|
|
|
|
cl_int error = CL_SUCCESS;
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
mOpenCLRuntime->commandQueue().finish();
|
|
{
|
|
AUTOTIME;
|
|
mOpenCLRuntime->commandQueue().enqueueWriteBuffer(*mHostBuffer.second, CL_TRUE, 0, srcTensor->elementSize()*sizeof(float), hostPtr);
|
|
}
|
|
#else
|
|
mOpenCLRuntime->commandQueue().enqueueWriteBuffer(*mHostBuffer.second, CL_TRUE, 0, srcTensor->elementSize()*sizeof(float), hostPtr);
|
|
#endif
|
|
// Host -> OpenCL
|
|
MNN_DATA_FORMAT data_format = TensorUtils::getDescribe(srcTensor)->dimensionFormat;
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
if(mOpenCLRuntime->getGpuMemType() == BUFFER)
|
|
{
|
|
if (MNN_DATA_FORMAT_NHWC == data_format) {
|
|
OpenCL::convertNHWCBufferToNC4HW4Buffer(&interBuffer, const_cast<Tensor*>(dstTensor),
|
|
*const_cast<cl::Kernel*>(&mNHWCBufferToNC4HW4BufferInp), mOpenCLRuntime.get(), true);
|
|
} else if (MNN_DATA_FORMAT_NCHW == data_format) {
|
|
OpenCL::convertNCHWBufferToNC4HW4Buffer(&interBuffer, const_cast<Tensor*>(dstTensor),
|
|
*const_cast<cl::Kernel*>(&mNCHWBufferToNC4HW4BufferInp), mOpenCLRuntime.get(), true);
|
|
} else if (MNN_DATA_FORMAT_NC4HW4 == data_format) {
|
|
OpenCL::convertNC4HW4BufferToNC4HW4Buffer(&interBuffer, const_cast<Tensor*>(dstTensor),
|
|
*const_cast<cl::Kernel*>(&mNC4HW4BufferToNC4HW4BufferInp), mOpenCLRuntime.get());
|
|
} else {
|
|
MNN_PRINT("input data format not support\n");
|
|
MNN_ASSERT(false);
|
|
}
|
|
}
|
|
else
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|
|
{
|
|
if (MNN_DATA_FORMAT_NHWC == data_format) {
|
|
OpenCL::convertNHWCBufferToImage(&interBuffer, const_cast<Tensor*>(dstTensor),
|
|
*const_cast<cl::Kernel*>(&mNHWCBufferToImageFloat), mOpenCLRuntime.get());
|
|
} else if (MNN_DATA_FORMAT_NCHW == data_format) {
|
|
OpenCL::convertNCHWBufferToImage(&interBuffer, const_cast<Tensor*>(dstTensor),
|
|
*const_cast<cl::Kernel*>(&mNCHWBufferToImageFloat), mOpenCLRuntime.get());
|
|
} else if (MNN_DATA_FORMAT_NC4HW4 == data_format) {
|
|
OpenCL::convertNC4HW4BufferToImage(&interBuffer, const_cast<Tensor*>(dstTensor),
|
|
*const_cast<cl::Kernel*>(&mNC4HW4BufferToImageFloat),
|
|
mOpenCLRuntime.get());
|
|
} else {
|
|
MNN_PRINT("data format not support\n");
|
|
MNN_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
if(srcTensor->getType().code == halide_type_uint || srcTensor->getType().code == halide_type_int){
|
|
mOpenCLRuntime.get()->commandQueue().finish();
|
|
if(nullptr != hostPtr){
|
|
free(hostPtr);
|
|
hostPtr = nullptr;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void OpenCLBackend::onCopyBuffer(const Tensor* srcTensor, const Tensor* dstTensor) const {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start onCopyBuffer !\n");
|
|
#endif
|
|
//int8
|
|
if(srcTensor->getType().code == halide_type_int && srcTensor->getType().bits == 8){
|
|
if (srcTensor->deviceId() == 0 && dstTensor->deviceId() != 0) {
|
|
copyToDeviceInt8(srcTensor, dstTensor);
|
|
}else if(srcTensor->deviceId() != 0 && dstTensor->deviceId() == 0){
|
|
copyFromDeviceInt8(srcTensor, dstTensor);
|
|
}else{
|
|
MNN_PRINT("onCopyBuffer int8 error !!! \n");
|
|
}
|
|
}else{
|
|
if (srcTensor->deviceId() == 0 && dstTensor->deviceId() != 0) {
|
|
copyToDevice(srcTensor, dstTensor);
|
|
}else if(srcTensor->deviceId() != 0 && dstTensor->deviceId() == 0){
|
|
copyFromDevice(srcTensor, dstTensor);
|
|
}else{
|
|
MNN_PRINT("onCopyBuffer float error !!! \n");
|
|
}
|
|
}
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end onCopyBuffer !\n");
|
|
#endif
|
|
}
|
|
|
|
|
|
bool OpenCLBackend::addCreator(std::pair<OpType, GpuMemObject> t, Creator* c) {
|
|
auto map = gCreator();
|
|
if (map->find(t) != map->end()) {
|
|
MNN_PRINT("Error: %d type, %d GpuMemObject has be added\n", t.first, t.second);
|
|
return false;
|
|
}
|
|
map->insert(std::make_pair(t, c));
|
|
return true;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Runtime Register
|
|
// -----------------------------------------------------------------------------
|
|
class CLRuntimeCreator : public RuntimeCreator {
|
|
virtual Runtime* onCreate(const Backend::Info& info) const {
|
|
#ifdef MNN_USE_LIB_WRAPPER
|
|
OpenCLSymbolsOperator::createOpenCLSymbolsOperatorSingleInstance();
|
|
if (nullptr == OpenCLSymbolsOperator::getOpenclSymbolsPtr()) {
|
|
MNN_PRINT("OpenCL init error, fallback ... \n");
|
|
return nullptr;
|
|
}
|
|
if (true == OpenCLSymbolsOperator::getOpenclSymbolsPtr()->isError()) {
|
|
MNN_PRINT("Parsing OpenCL symbols error !!! \n");
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
auto rt = new CLRuntime(info);
|
|
if(rt->isCLRuntimeError() == true) {
|
|
delete rt;
|
|
return nullptr;
|
|
}
|
|
return rt;
|
|
}
|
|
virtual bool onValid(Backend::Info& info) const {
|
|
return true;
|
|
}
|
|
};
|
|
|
|
static bool gResistor = []() {
|
|
MNNInsertExtraRuntimeCreator(MNN_FORWARD_OPENCL, new CLRuntimeCreator, true);
|
|
return false;
|
|
}();
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|