mirror of https://github.com/alibaba/MNN.git
554 lines
23 KiB
C++
554 lines
23 KiB
C++
//
|
|
// GeometryTensorArray.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2020/12/22.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <numeric>
|
|
#include "geometry/GeometryComputer.hpp"
|
|
#include "geometry/GeometryComputerUtils.hpp"
|
|
#include "core/OpCommonUtils.hpp"
|
|
namespace MNN {
|
|
// get a pair <ElemOffset, ElemSize>
|
|
static std::pair<int, int> getElemSize(const Tensor* t, int index) {
|
|
auto des = TensorUtils::getDescribe(t);
|
|
const auto& shapes = des->tensorArrayAttr->elemShape;
|
|
int elemSize = 1;
|
|
if (index < 0) {
|
|
index = index + shapes.size();
|
|
}
|
|
if (!des->tensorArrayAttr->isIdenticalShape && shapes.size() > index) {
|
|
int offset = 0;
|
|
for (int i = 0; i <= index; i++) {
|
|
elemSize = 1;
|
|
std::for_each(shapes[i].begin(), shapes[i].end(), [&elemSize](int x) { elemSize *= x; });
|
|
offset += elemSize;
|
|
}
|
|
return {offset - elemSize, elemSize};
|
|
} else if (shapes.size() >= 1) {
|
|
elemSize = 1;
|
|
std::for_each(shapes[0].begin(), shapes[0].end(), [&elemSize](int x) { elemSize *= x; });
|
|
return {index * elemSize, elemSize};
|
|
} else {
|
|
MNN_ASSERT(false);
|
|
return {0, 0};
|
|
}
|
|
}
|
|
|
|
static bool isFirstWrite(const Tensor::InsideDescribe::NativeInsideDescribe* des) {
|
|
if (des->tensorArrayAttr->elemShape.empty()) {
|
|
return true;
|
|
}
|
|
for (const auto& dim : des->tensorArrayAttr->elemShape[0]) {
|
|
if (dim < 0) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
class GeometryTensorArray : public GeometryComputer {
|
|
public:
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
if (TensorUtils::getDescribe(outputs[1])->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
if (TensorUtils::getDescribe(outputs[1])->tensorArrayAttr->arraySize > 0) {
|
|
auto type = outputs[1]->getType();
|
|
auto zeroConst = context.allocConst(op, {}, type);
|
|
if (type == halide_type_of<float>()) {
|
|
zeroConst->host<float>()[0] = 0.0;
|
|
} else {
|
|
zeroConst->host<int>()[0] = 0;
|
|
}
|
|
for (int i = 0; i < 2; i++) {
|
|
auto des = TensorUtils::getDescribe(outputs[i]);
|
|
des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
|
auto& regions = des->regions;
|
|
regions.resize(1);
|
|
regions[0].origin = zeroConst.get();
|
|
regions[0].size[0] = outputs[1]->elementSize();
|
|
regions[0].src.stride[0] = 0;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
class GeometryTensorArraySize : public GeometryComputer {
|
|
public:
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
auto tensorArrayInput = inputs[1];
|
|
if (TensorUtils::getDescribe(tensorArrayInput)->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
if (!context.allocTensor(outputs[0])) {
|
|
return false;
|
|
}
|
|
outputs[0]->host<int>()[0] = TensorUtils::getDescribe(tensorArrayInput)->tensorArrayAttr->arraySize;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class GeometryTensorArrayRead : public GeometryComputer {
|
|
public:
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
auto tensorArrayInput = inputs[2];
|
|
if (TensorUtils::getDescribe(tensorArrayInput)->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
auto output = outputs[0];
|
|
auto outputDes = TensorUtils::getDescribe(output);
|
|
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
|
outputDes->regions.resize(1);
|
|
auto& reg = outputDes->regions[0];
|
|
auto index = inputs[1]->host<uint32_t>()[0];
|
|
auto elemSize = getElemSize(tensorArrayInput, index);
|
|
reg.origin = tensorArrayInput;
|
|
reg.src.offset = elemSize.first;
|
|
reg.src.stride[0] = 1;
|
|
reg.src.stride[1] = 1;
|
|
reg.src.stride[2] = 1;
|
|
reg.dst.offset = 0;
|
|
reg.dst.stride[0] = 1;
|
|
reg.dst.stride[1] = 1;
|
|
reg.dst.stride[2] = 1;
|
|
reg.size[0] = elemSize.second;
|
|
reg.size[1] = 1;
|
|
reg.size[2] = 1;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class GeometryTensorArrayWrite : public GeometryComputer {
|
|
public:
|
|
// tensor(index < seq_length) will insert instead of overwrite when onnxInsert=true
|
|
GeometryTensorArrayWrite(bool insertMode) : mInsertMode(insertMode) { }
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
auto tensorArrayInput = inputs[3];
|
|
auto inDes = TensorUtils::getDescribe(tensorArrayInput);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
auto output = outputs[0];
|
|
auto outDes = TensorUtils::getDescribe(output);
|
|
outDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
|
|
|
int oldSize = inDes->tensorArrayAttr->arraySize;
|
|
int writeIndex = inputs[1]->host<uint32_t>()[0];
|
|
// mInsertMode=true mean onnx mode, which position tensor is int32 instead of uint32
|
|
if (mInsertMode) {
|
|
writeIndex = inputs[1]->host<int32_t>()[0];
|
|
writeIndex += (writeIndex < 0 ? inDes->tensorArrayAttr->arraySize: 0); // [-n, n]
|
|
}
|
|
auto elemSize = getElemSize(output, writeIndex);
|
|
outDes->regions.clear();
|
|
// support insertMode=true/false, easier to understand
|
|
int regionSize = (writeIndex > 0) + 1 + (writeIndex < outDes->tensorArrayAttr->arraySize - 1);
|
|
outDes->regions.reserve(regionSize);
|
|
/*
|
|
src: [leftData][writeIndex][rightData]
|
|
dst: [leftData][writeTensor][rightData]
|
|
*/
|
|
// 1. write Tensor to dst TensorArray [must]
|
|
if (elemSize.second == 0) {
|
|
return true;
|
|
}
|
|
{
|
|
Tensor::InsideDescribe::Region writeTensorRegion;
|
|
writeTensorRegion.origin = inputs[2];
|
|
writeTensorRegion.src.offset = 0;
|
|
writeTensorRegion.src.stride[0] = 1;
|
|
writeTensorRegion.src.stride[1] = 1;
|
|
writeTensorRegion.src.stride[2] = 1;
|
|
writeTensorRegion.dst.offset = elemSize.first;
|
|
writeTensorRegion.dst.stride[0] = 1;
|
|
writeTensorRegion.dst.stride[1] = 1;
|
|
writeTensorRegion.dst.stride[2] = 1;
|
|
writeTensorRegion.size[0] = elemSize.second;
|
|
writeTensorRegion.size[1] = 1;
|
|
writeTensorRegion.size[2] = 1;
|
|
MNN_ASSERT(elemSize.second > 0);
|
|
outDes->regions.emplace_back(std::move(writeTensorRegion));
|
|
}
|
|
if (regionSize == 1) {
|
|
return true;
|
|
}
|
|
// first write data, set pre zero
|
|
bool firstWrite = isFirstWrite(inDes);
|
|
if (firstWrite) {
|
|
auto type = tensorArrayInput->getType();
|
|
auto zeroConst = context.allocConst(op, {}, type);
|
|
if (type == halide_type_of<float>()) {
|
|
zeroConst->host<float>()[0] = 0.0;
|
|
} else {
|
|
zeroConst->host<int>()[0] = 0;
|
|
}
|
|
tensorArrayInput = zeroConst.get();
|
|
}
|
|
// 2. copy TensorArray leftData [optional]
|
|
if (writeIndex > 0 && elemSize.first > 0) {
|
|
Tensor::InsideDescribe::Region leftDataRegion;
|
|
leftDataRegion.origin = tensorArrayInput;
|
|
leftDataRegion.src.offset = 0;
|
|
leftDataRegion.src.stride[0] = !firstWrite;
|
|
leftDataRegion.src.stride[1] = 1;
|
|
leftDataRegion.src.stride[2] = 1;
|
|
leftDataRegion.dst.offset = 0;
|
|
leftDataRegion.dst.stride[0] = 1;
|
|
leftDataRegion.dst.stride[1] = 1;
|
|
leftDataRegion.dst.stride[2] = 1;
|
|
leftDataRegion.size[0] = elemSize.first;
|
|
leftDataRegion.size[1] = 1;
|
|
leftDataRegion.size[2] = 1;
|
|
outDes->regions.emplace_back(std::move(leftDataRegion));
|
|
}
|
|
// 3. copy TensorArray rightData [optional]
|
|
int rightSize = oldSize - writeIndex - (mInsertMode ? 0 : 1);
|
|
if (rightSize > 0) {
|
|
auto last = getElemSize(inputs[0], oldSize-1);
|
|
int totalSize = last.first + last.second;
|
|
int offset = elemSize.first + elemSize.second;
|
|
int offsetSrc = offset - (mInsertMode ? elemSize.second: 0);
|
|
int rightRegionSize = totalSize - offsetSrc;
|
|
if (rightRegionSize > 0) {
|
|
Tensor::InsideDescribe::Region rightDataRegion;
|
|
rightDataRegion.origin = tensorArrayInput;
|
|
rightDataRegion.src.offset = (!firstWrite) * offsetSrc;
|
|
rightDataRegion.src.stride[0] = !firstWrite;
|
|
rightDataRegion.src.stride[1] = 1;
|
|
rightDataRegion.src.stride[2] = 1;
|
|
rightDataRegion.dst.offset = offset;
|
|
rightDataRegion.dst.stride[0] = 1;
|
|
rightDataRegion.dst.stride[1] = 1;
|
|
rightDataRegion.dst.stride[2] = 1;
|
|
rightDataRegion.size[0] = rightRegionSize;
|
|
rightDataRegion.size[1] = 1;
|
|
rightDataRegion.size[2] = 1;
|
|
outDes->regions.emplace_back(std::move(rightDataRegion));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
private:
|
|
bool mInsertMode;
|
|
};
|
|
|
|
class GeometryTensorArrayGather : public GeometryComputer {
|
|
public:
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
auto tensorArrayInput = inputs[2];
|
|
auto inDes = TensorUtils::getDescribe(tensorArrayInput);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
return false;
|
|
}
|
|
auto indicesTensor = inputs[1];
|
|
std::vector<int> indices(indicesTensor->elementSize());
|
|
for (int i = 0; i < indices.size(); i++) {
|
|
indices[i] = indicesTensor->host<int>()[i];
|
|
}
|
|
auto output = outputs[0];
|
|
auto outputDes = TensorUtils::getDescribe(output);
|
|
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
|
outputDes->regions.resize(indices.size());
|
|
int arraySize = inDes->tensorArrayAttr->arraySize;
|
|
int dstOffset = 0;
|
|
for (int i = 0; i < indices.size(); i++) {
|
|
MNN_ASSERT(indices[i] < arraySize);
|
|
auto elemSize = getElemSize(tensorArrayInput, indices[i]);
|
|
auto& reg = outputDes->regions[i];
|
|
reg.origin = tensorArrayInput;
|
|
reg.src.offset = elemSize.first;
|
|
reg.src.stride[0] = 1;
|
|
reg.src.stride[1] = 1;
|
|
reg.src.stride[2] = 1;
|
|
reg.dst.offset = dstOffset;
|
|
reg.dst.stride[0] = 1;
|
|
reg.dst.stride[1] = 1;
|
|
reg.dst.stride[2] = 1;
|
|
reg.size[0] = elemSize.second;
|
|
reg.size[1] = 1;
|
|
reg.size[2] = 1;
|
|
dstOffset += elemSize.second;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class GeometryTensorArrayScatter : public GeometryComputer {
|
|
public:
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
auto tensorArrayInput = inputs[3];
|
|
auto inDes = TensorUtils::getDescribe(tensorArrayInput);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
return false;
|
|
}
|
|
int oldSize = inDes->tensorArrayAttr->arraySize;
|
|
auto output = outputs[0];
|
|
int elemSize = getElemSize(output, 0).second;
|
|
auto indicesTensor = inputs[1];
|
|
// tag index write or not
|
|
std::vector<bool> isWrite(oldSize, false);
|
|
// write index
|
|
std::vector<int> indices(indicesTensor->elementSize());
|
|
// not write index
|
|
std::vector<int> remains;
|
|
for (int i = 0; i < indices.size(); i++) {
|
|
indices[i] = indicesTensor->host<int>()[i];
|
|
if (i < oldSize) {
|
|
isWrite[i] = true;
|
|
}
|
|
}
|
|
for (int i = 0; i < oldSize; i++) {
|
|
if (!isWrite[i]) {
|
|
remains.push_back(i);
|
|
}
|
|
}
|
|
auto outputDes = TensorUtils::getDescribe(output);
|
|
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
|
outputDes->regions.resize(indices.size() + remains.size());
|
|
// write value by indices
|
|
for (int i = 0; i < indices.size(); i++) {
|
|
MNN_ASSERT(indices[i] < outputDes->tensorArrayAttr->arraySize);
|
|
auto& reg = outputDes->regions[i];
|
|
reg.origin = inputs[2];
|
|
reg.src.offset = i * elemSize;
|
|
reg.src.stride[0] = 1;
|
|
reg.src.stride[1] = 1;
|
|
reg.src.stride[2] = 1;
|
|
reg.dst.offset = indices[i] * elemSize;
|
|
reg.dst.stride[0] = 1;
|
|
reg.dst.stride[1] = 1;
|
|
reg.dst.stride[2] = 1;
|
|
reg.size[0] = elemSize;
|
|
reg.size[1] = 1;
|
|
reg.size[2] = 1;
|
|
}
|
|
if (remains.empty()) {
|
|
return true;
|
|
}
|
|
// first write data, set zero
|
|
bool firstWrite = isFirstWrite(inDes);
|
|
if (firstWrite) {
|
|
auto type = tensorArrayInput->getType();
|
|
auto zeroConst = context.allocConst(op, {}, type);
|
|
if (type == halide_type_of<float>()) {
|
|
zeroConst->host<float>()[0] = 0.0;
|
|
} else {
|
|
zeroConst->host<int>()[0] = 0;
|
|
}
|
|
tensorArrayInput = zeroConst.get();
|
|
}
|
|
// copy not write value by remains
|
|
for (int i = 0; i < remains.size(); i++) {
|
|
auto& reg = outputDes->regions[indices.size() + i];
|
|
reg.origin = tensorArrayInput;
|
|
reg.src.offset = (!firstWrite) * remains[i] * elemSize;
|
|
reg.src.stride[0] = !firstWrite;
|
|
reg.src.stride[1] = 1;
|
|
reg.src.stride[2] = 1;
|
|
reg.dst.offset = remains[i] * elemSize;
|
|
reg.dst.stride[0] = 1;
|
|
reg.dst.stride[1] = 1;
|
|
reg.dst.stride[2] = 1;
|
|
reg.size[0] = elemSize;
|
|
reg.size[1] = 1;
|
|
reg.size[2] = 1;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class GeometryTensorArraySplit : public GeometryComputer {
|
|
public:
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
auto shape = inputs[1]->shape();
|
|
int splitAxis = (op->main_as_TensorArray()->axis() + shape.size()) % shape.size();
|
|
auto outside = std::accumulate(shape.begin(), shape.begin() + splitAxis, 1,
|
|
[](int a, int b) { return a * b; });
|
|
auto inside = std::accumulate(shape.begin() + splitAxis + 1, shape.end(), 1,
|
|
[](int a, int b) { return a * b; });
|
|
|
|
auto value = inputs[1], lengths = inputs[2];
|
|
bool scalarSplit = (lengths->elementSize() == 1);
|
|
int totalLen = value->shape()[splitAxis];
|
|
int splitNum = (scalarSplit ? UP_DIV(totalLen, lengths->host<int>()[0]) : lengths->length(0));
|
|
auto output = outputs[0];
|
|
auto outDes = TensorUtils::getDescribe(output);
|
|
outDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
|
outDes->regions.clear();
|
|
for (int i = 0, splitSum = 0, splitLast = -1; i < splitNum; ++i) {
|
|
int splitLen;
|
|
if (scalarSplit) {
|
|
splitLen = ALIMIN(lengths->host<int>()[0], totalLen - splitSum);
|
|
} else {
|
|
splitLen = lengths->host<int>()[i];
|
|
}
|
|
if (splitLast == splitLen) {
|
|
outDes->regions[outDes->regions.size() - 1].size[0] += 1;
|
|
splitSum += splitLen;
|
|
splitLast = splitLen;
|
|
continue;
|
|
}
|
|
Tensor::InsideDescribe::Region reg;
|
|
reg.origin = value;
|
|
reg.src.offset = inside * splitSum;
|
|
reg.src.stride[0] = inside * splitLen;
|
|
reg.src.stride[1] = inside * shape[splitAxis];
|
|
reg.dst.offset = inside * outside * splitSum;
|
|
reg.dst.stride[0] = inside * outside * splitLen;
|
|
reg.dst.stride[1] = inside * splitLen;
|
|
reg.size[1] = outside;
|
|
reg.size[2] = inside * splitLen;
|
|
outDes->regions.push_back(reg);
|
|
splitSum += splitLen;
|
|
splitLast = splitLen;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class GeometryTensorArrayConcat : public GeometryComputer {
|
|
public:
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
auto output = outputs[0];
|
|
auto outDes = TensorUtils::getDescribe(output);
|
|
outDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
|
outDes->regions.clear();
|
|
auto attr = TensorUtils::getDescribe(inputs[1])->tensorArrayAttr;
|
|
auto tpParam = op->main_as_TensorArray();
|
|
int concatAxis = tpParam->axis(), newAxis = tpParam->new_axis();
|
|
int outputDimensions = output->dimensions();
|
|
concatAxis = (concatAxis + outputDimensions) % outputDimensions;
|
|
int outside = 1;
|
|
int inside = 1;
|
|
for (int i=0; i<concatAxis; ++i) {
|
|
outside *= output->length(i);
|
|
}
|
|
for (int i=concatAxis+1; i<output->dimensions(); ++i) {
|
|
inside *= output->length(i);
|
|
}
|
|
int concatFinal = output->length(concatAxis);
|
|
for (int i = 0, concatSum = 0, concatLast = -1; i < attr->arraySize; ++i) {
|
|
int shapeIndex = i;
|
|
if (attr->isIdenticalShape) {
|
|
shapeIndex = 0;
|
|
}
|
|
int concatLen = 1;
|
|
if (newAxis == 0) {
|
|
concatLen = attr->elemShape[shapeIndex][concatAxis];
|
|
}
|
|
if (1 == outside && outDes->regions.size() > 0) {
|
|
// If outside is 1, fuse to one region
|
|
outDes->regions[outDes->regions.size() - 1].size[2] += inside * concatLen;
|
|
concatSum += concatLen;
|
|
continue;
|
|
}
|
|
if (concatLast == concatLen) {
|
|
// Fuse to last region
|
|
outDes->regions[outDes->regions.size() - 1].size[0] += 1;
|
|
concatSum += concatLen;
|
|
continue;
|
|
}
|
|
Tensor::InsideDescribe::Region reg;
|
|
reg.origin = inputs[1];
|
|
reg.src.offset = inside * outside * concatSum;
|
|
reg.src.stride[0] = outside * inside * concatLen;
|
|
reg.src.stride[1] = inside * concatLen;
|
|
reg.dst.offset = inside * concatSum;
|
|
reg.dst.stride[0] = inside * concatLen;
|
|
reg.dst.stride[1] = inside * concatFinal;
|
|
reg.size[1] = outside;
|
|
reg.size[2] = inside * concatLen;
|
|
outDes->regions.push_back(reg);
|
|
concatSum += concatLen;
|
|
concatLast = concatLen;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class GeometryTensorArrayErase : public GeometryComputer {
|
|
public:
|
|
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
Context& context, CommandBuffer& res) const override {
|
|
auto tensorArrayInput = inputs[2];
|
|
auto inDes = TensorUtils::getDescribe(tensorArrayInput);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
auto output = outputs[0];
|
|
auto outputDes = TensorUtils::getDescribe(output);
|
|
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
|
|
|
|
int eraseIndex = inputs[1]->host<int32_t>()[0], oldSize = inDes->tensorArrayAttr->arraySize;
|
|
eraseIndex += (eraseIndex < 0 ? oldSize: 0);
|
|
auto eleSize = getElemSize(tensorArrayInput, eraseIndex);
|
|
outputDes->regions.clear();
|
|
if (eraseIndex > 0) {
|
|
Tensor::InsideDescribe::Region reg;
|
|
reg.origin = tensorArrayInput;
|
|
reg.src.offset = 0;
|
|
reg.src.stride[0] = reg.src.stride[1] = reg.src.stride[2] = 1;
|
|
reg.dst.offset = 0;
|
|
reg.dst.stride[0] = reg.dst.stride[1] = reg.dst.stride[2] = 1;
|
|
reg.size[0] = eleSize.first;
|
|
reg.size[1] = reg.size[2] = 1;
|
|
outputDes->regions.push_back(reg);
|
|
}
|
|
if (eraseIndex < oldSize - 1) {
|
|
int offset = eleSize.first + eleSize.second;
|
|
Tensor::InsideDescribe::Region reg;
|
|
reg.origin = tensorArrayInput;
|
|
reg.src.offset = offset;
|
|
reg.src.stride[0] = reg.src.stride[1] = reg.src.stride[2] = 1;
|
|
reg.dst.offset = eleSize.first;
|
|
reg.dst.stride[0] = reg.dst.stride[1] = reg.dst.stride[2] = 1;
|
|
reg.size[0] = tensorArrayInput->elementSize() - offset;
|
|
reg.size[1] = reg.size[2] = 1;
|
|
outputDes->regions.push_back(reg);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
static void _create() {
|
|
std::shared_ptr<GeometryComputer> comp0(new GeometryTensorArray);
|
|
GeometryComputer::registerGeometryComputer(comp0, {OpType_TensorArray});
|
|
std::shared_ptr<GeometryComputer> comp1(new GeometryTensorArraySize);
|
|
GeometryComputer::registerGeometryComputer(comp1, {OpType_TensorArraySize});
|
|
std::shared_ptr<GeometryComputer> comp2(new GeometryTensorArrayRead);
|
|
GeometryComputer::registerGeometryComputer(comp2, {OpType_TensorArrayRead});
|
|
std::shared_ptr<GeometryComputer> comp3(new GeometryTensorArrayWrite(false));
|
|
GeometryComputer::registerGeometryComputer(comp3, {OpType_TensorArrayWrite});
|
|
std::shared_ptr<GeometryComputer> comp4(new GeometryTensorArrayGather);
|
|
GeometryComputer::registerGeometryComputer(comp4, {OpType_TensorArrayGather});
|
|
std::shared_ptr<GeometryComputer> comp5(new GeometryTensorArrayScatter);
|
|
GeometryComputer::registerGeometryComputer(comp5, {OpType_TensorArrayScatter});
|
|
std::shared_ptr<GeometryComputer> comp6(new GeometryTensorArraySplit);
|
|
GeometryComputer::registerGeometryComputer(comp6, {OpType_TensorArraySplit});
|
|
std::shared_ptr<GeometryComputer> comp7(new GeometryTensorArrayConcat);
|
|
GeometryComputer::registerGeometryComputer(comp7, {OpType_TensorArrayConcat});
|
|
std::shared_ptr<GeometryComputer> comp8(new GeometryTensorArrayWrite(true));
|
|
GeometryComputer::registerGeometryComputer(comp8, {OpType_TensorArrayInsert});
|
|
std::shared_ptr<GeometryComputer> comp9(new GeometryTensorArrayErase);
|
|
GeometryComputer::registerGeometryComputer(comp9, {OpType_TensorArrayErase});
|
|
}
|
|
|
|
REGISTER_GEOMETRY(GeometryTensorArray, _create);
|
|
} // namespace MNN
|