mirror of https://github.com/alibaba/MNN.git
293 lines
12 KiB
C++
293 lines
12 KiB
C++
//
|
|
// ConvInt8TiledExecutor.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/5/17.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "ConvInt8TiledExecutor.hpp"
|
|
#include "ConvolutionTiledExecutor.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/BufferAllocator.hpp"
|
|
|
|
#include <math.h>
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
#include "core/Concurrency.h"
|
|
#include "core/TensorUtils.hpp"
|
|
namespace MNN {
|
|
|
|
ConvInt8TiledExecutor::ConvInt8TiledExecutor(Backend* backend, const Convolution2DCommon* convOp, std::shared_ptr<ResourceInt8> res): CPUConvolution(convOp, backend), mResource(res), mMutableResource(res, backend) {
|
|
mValid = mMutableResource.mValid;
|
|
}
|
|
|
|
ConvInt8TiledExecutor::~ConvInt8TiledExecutor() {
|
|
// Do nothing
|
|
}
|
|
|
|
bool ConvInt8TiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
|
|
return false;
|
|
}
|
|
|
|
ErrorCode ConvInt8TiledExecutor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
mMutableResource.updateInputOutputScale(TensorUtils::getQuantInfo(inputs[0]), TensorUtils::getQuantInfo(outputs[0]));
|
|
CPUConvolution::onResize(inputs, outputs);
|
|
ConvolutionTiledExecutor::setIm2ColParameter(mIm2ColParamter, mCommon, inputs[0], outputs[0], mPadX, mPadY, static_cast<CPUBackend*>(backend())->functions(), static_cast<CPUBackend*>(backend())->int8Functions());
|
|
return NO_ERROR;
|
|
}
|
|
|
|
void ConvInt8TiledExecutor::reorderWeight(Tensor* weight, const uint8_t* weightSrc, int SRC_UNIT, int UNIT, int ic, int oc, int kernelCount) {
|
|
auto weightDst = weight->host<uint8_t>();
|
|
memset(weightDst, 0, weight->size());
|
|
if (SRC_UNIT > UNIT) {
|
|
auto icDivU = UP_DIV(ic, UNIT);
|
|
for (int k = 0; k < kernelCount; ++k) {
|
|
const auto srcK = weightSrc + k;
|
|
for (int y = 0; y < ic; ++y) {
|
|
const int yOutSide = y / UNIT;
|
|
const int yInSide = y % UNIT;
|
|
const int yIndex = yOutSide + k * icDivU;
|
|
const int ySubOutSide = yIndex / (SRC_UNIT / UNIT);
|
|
const int ySubInSide = yIndex % (SRC_UNIT / UNIT);
|
|
|
|
auto dstY = weightDst + ySubOutSide * weight->stride(1) + ySubInSide * UNIT + yInSide;
|
|
const auto srcY = srcK + y * kernelCount;
|
|
for (int x = 0; x < oc; ++x) {
|
|
const int xOutSide = x / UNIT;
|
|
const int xInSide = x % UNIT;
|
|
const int dstIndex = xOutSide * weight->stride(0) + xInSide * SRC_UNIT;
|
|
const int srcIndex = x * kernelCount * ic;
|
|
dstY[dstIndex] = srcY[srcIndex];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (int k = 0; k < kernelCount; ++k) {
|
|
auto icDivU = UP_DIV(ic, SRC_UNIT);
|
|
const auto srcK = weightSrc + k;
|
|
for (int y = 0; y < ic; ++y) {
|
|
const int yOutSide = y / SRC_UNIT;
|
|
const int yInSide = y % SRC_UNIT;
|
|
|
|
auto dstY = weightDst + (yOutSide + k * icDivU) * weight->stride(1) + yInSide;
|
|
const auto srcY = srcK + y * kernelCount;
|
|
for (int x = 0; x < oc; ++x) {
|
|
const int xOutSide = x / UNIT;
|
|
const int xInSide = x % UNIT;
|
|
const int dstIndex = xOutSide * weight->stride(0) + xInSide * SRC_UNIT;
|
|
const int srcIndex = x * kernelCount * ic;
|
|
dstY[dstIndex] = srcY[srcIndex];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool _reorderWeightInside(Backend* bn, const Convolution2DCommon* common,
|
|
const std::shared_ptr<Tensor>& weightOrigin,
|
|
std::shared_ptr<Tensor>& weight) {
|
|
auto core = static_cast<CPUBackend*>(bn)->int8Functions();
|
|
int UNIT, SRC_UNIT, DST_XUNIT;
|
|
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
|
|
// reorder weight, [oc, ic, k^2] => [oc/unit, ((ic/unit)*k^2)/(src_unit/unit), unit(oc), (src_unit/unit), unit(ic)]
|
|
int oc = common->outputCount(), ic = common->inputCount(), kernelCount = common->kernelX() * common->kernelY();
|
|
std::vector<int> shape;
|
|
if (SRC_UNIT > UNIT) {
|
|
MNN_ASSERT(SRC_UNIT % UNIT == 0);
|
|
shape = {UP_DIV(oc, UNIT), UP_DIV(UP_DIV(ic, UNIT) * kernelCount, SRC_UNIT / UNIT), UNIT, SRC_UNIT};
|
|
} else {
|
|
shape = {UP_DIV(oc, UNIT), UP_DIV(ic, SRC_UNIT) * kernelCount, UNIT, SRC_UNIT};
|
|
}
|
|
|
|
weight.reset(Tensor::createDevice<int8_t>(shape));
|
|
|
|
bool succ = bn->onAcquireBuffer(weight.get(), Backend::STATIC);
|
|
if (!succ) {
|
|
MNN_ERROR("Memory not enough");
|
|
return false;
|
|
}
|
|
ConvInt8TiledExecutor::reorderWeight(weight.get(), weightOrigin->host<uint8_t>(), SRC_UNIT, UNIT, ic, oc, kernelCount);
|
|
return true;
|
|
}
|
|
|
|
DenseConvInt8TiledExecutor::DenseConvInt8TiledExecutor(Backend* backend, const Convolution2D* convOp, std::shared_ptr<ResourceInt8> res) : ConvInt8TiledExecutor(backend, convOp->common(), res) {
|
|
std::shared_ptr<Tensor> weightOrigin = mResource->mWeightInt8;
|
|
mValid = _reorderWeightInside(backend, convOp->common(), weightOrigin, mResource->mWeightInt8);
|
|
if(!mValid) {
|
|
return;
|
|
}
|
|
// choose int8 gemm kernel
|
|
auto core = static_cast<CPUBackend*>(backend)->int8Functions();
|
|
mGemmKernel = core->Int8GemmKernel;
|
|
#ifdef MNN_USE_SSE
|
|
int actBits = convOp->symmetricQuan()->nbits();
|
|
if (actBits <= 7) {
|
|
mGemmKernel = core->Int8GemmKernelFast;
|
|
}
|
|
#else
|
|
if(convOp->symmetricQuan()->method() == QuantizeAlgo_OVERFLOW_AWARE){
|
|
mGemmKernel = core->Int8GemmKernelFast;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
DenseConvInt8TiledExecutor::DenseConvInt8TiledExecutor(Backend* backend, const Convolution2DCommon* common, const DenseConvInt8TiledExecutor& exe)
|
|
: ConvInt8TiledExecutor(backend, common, exe.mResource), mGemmKernel(exe.mGemmKernel) {
|
|
|
|
}
|
|
|
|
DenseConvInt8TiledExecutor::~DenseConvInt8TiledExecutor() {
|
|
// Do nothing
|
|
}
|
|
|
|
bool DenseConvInt8TiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
|
|
if (nullptr == dst) {
|
|
return true;
|
|
}
|
|
auto exe = new DenseConvInt8TiledExecutor(bn, op->main_as_Convolution2D()->common(), *this);
|
|
if (!exe->valid()) {
|
|
return false;
|
|
}
|
|
*dst = exe;
|
|
return true;
|
|
}
|
|
|
|
void DenseConvInt8TiledExecutor::getPackParameter(int* Unit, int* srcUnit, int* DestUnit, const CoreInt8Functions* core) {
|
|
core->MNNGetGemmUnit(Unit, srcUnit, DestUnit);
|
|
}
|
|
|
|
|
|
ErrorCode DenseConvInt8TiledExecutor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
// Timer kernelTimer;
|
|
ConvInt8TiledExecutor::onResize(inputs, outputs);
|
|
auto output = outputs[0];
|
|
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
|
|
|
|
int UNIT, SRC_UNIT, DST_XUNIT;
|
|
getPackParameter(&UNIT, &SRC_UNIT, &DST_XUNIT, core);
|
|
const int threads = std::max(static_cast<CPUBackend*>(backend())->threadNumber(), 1);
|
|
auto planeSize = output->width() * output->height() * output->batch();
|
|
auto planeSizeInThread = UP_DIV(planeSize, threads);
|
|
const int L2Size = 2048;
|
|
const int tileLimitByC = UP_DIV(L2Size, mIm2ColParamter.kernelCountUnit * SRC_UNIT);
|
|
int tileLimit = ALIMIN(tileLimitByC, planeSizeInThread);
|
|
mIm2ColCount = UP_DIV(tileLimit, DST_XUNIT);
|
|
auto DynamicDestUnit = DST_XUNIT * mIm2ColCount;
|
|
mTileCount = UP_DIV(planeSize, DynamicDestUnit);
|
|
mThreadNums = std::min(threads, mTileCount);
|
|
|
|
auto input = inputs[0];
|
|
// set im2col tensor info
|
|
mTempIm2ColBuffer.reset(Tensor::createDevice<int8_t>({mThreadNums, DST_XUNIT * mIm2ColCount * mResource->mWeightInt8->length(1) * SRC_UNIT}));
|
|
bool success = backend()->onAcquireBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
|
|
if (!success) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
auto bufferAlloc = static_cast<CPUBackend*>(backend())->getBufferAllocator();
|
|
auto blitInfoSize = ConvolutionTiledExecutor::computeBlitInfoSize(DST_XUNIT * mIm2ColCount, mIm2ColParamter.ow, mIm2ColParamter.kernelX * mIm2ColParamter.kernelY, mThreadNums);
|
|
mBlitInfo = bufferAlloc->alloc(blitInfoSize.first);
|
|
if (mBlitInfo.invalid()) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
bufferAlloc->free(mBlitInfo);
|
|
mBlitInfoStride = blitInfoSize.second;
|
|
|
|
backend()->onReleaseBuffer(mTempIm2ColBuffer.get(), Backend::DYNAMIC);
|
|
// MNN_PRINT("dense conv2d int8 resize: cost time: %llu us\n", kernelTimer.durationInUs());
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode DenseConvInt8TiledExecutor::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
// Timer kernelTimer;
|
|
const auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
|
|
|
|
int UNIT__, SRC_UNIT, DST_XUNIT;
|
|
core->MNNGetGemmUnit(&UNIT__, &SRC_UNIT, &DST_XUNIT);
|
|
auto blitProc = core->MNNPackC4Int8ForMatMul_A;
|
|
const int plane = output->batch() * mIm2ColParamter.oh * mIm2ColParamter.ow;
|
|
int PackUnit = static_cast<CPUBackend*>(backend())->functions()->pack;
|
|
const int dstZStep = plane * PackUnit;
|
|
|
|
const int batch = input->batch();
|
|
const int ocDiv4 = UP_DIV(output->channel(), PackUnit);
|
|
const auto kernelCountUnitDouble = mIm2ColParamter.kernelCountUnit;
|
|
//auto remain = outputPlaneLen % GEMM_INT8_DST_XUNIT;
|
|
//FUNC_PRINT(remain);
|
|
|
|
const auto inputDataPtr = input->host<int8_t>();
|
|
const auto weightDataPtr = mResource->mWeightInt8->host<int8_t>();
|
|
|
|
auto im2colPtr = mTempIm2ColBuffer->host<int8_t>();
|
|
auto outputDataPtr = output->host<int8_t>();
|
|
QuanPostTreatParameters quanParam;
|
|
quanParam.bias = mMutableResource.mBiasInt32->host<int32_t>();
|
|
quanParam.scale = mMutableResource.mScaleFloat->host<float>();
|
|
quanParam.maxValue = mMutableResource.mClampMax;
|
|
if (mResource->mRelu) {
|
|
quanParam.minValue = mMutableResource.mOutputZeroPoint;
|
|
} else {
|
|
quanParam.minValue = mMutableResource.mClampMin;
|
|
}
|
|
int dstBytes = static_cast<CPUBackend*>(backend())->getBytes(backend(), output);
|
|
if (dstBytes != 1) {
|
|
quanParam.useInt8 = 0;
|
|
}
|
|
//MNN_PRINT("max: %d, min: %d\n", quanParam.maxValue, quanParam.minValue);
|
|
const int col_buffer_unit_size = mIm2ColParamter.kernelCountUnit * DST_XUNIT * SRC_UNIT * sizeof(int8_t);
|
|
auto col_buffer_size = col_buffer_unit_size * mIm2ColCount;
|
|
auto threadFunction = [&](int tId) {
|
|
auto colAddr = im2colPtr + tId * mTempIm2ColBuffer->stride(0);
|
|
auto srcPtr = (int8_t const **)(mBlitInfo.ptr() + tId * mBlitInfoStride.first);
|
|
auto el = (int32_t *)(srcPtr + mBlitInfoStride.second);
|
|
|
|
int32_t info[4];
|
|
info[1] = mIm2ColParamter.iw * mIm2ColParamter.ih * batch;
|
|
info[2] = col_buffer_unit_size;
|
|
info[3] = mIm2ColParamter.strideX;
|
|
for (int tIndex = tId; tIndex < mTileCount; tIndex += mThreadNums) {
|
|
const int xIndexStart = tIndex * DST_XUNIT * mIm2ColCount;
|
|
int realDstCount = ALIMIN(plane - xIndexStart, DST_XUNIT * mIm2ColCount);
|
|
|
|
// im2col
|
|
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, xIndexStart, realDstCount, mIm2ColParamter, (const uint8_t*)inputDataPtr, 1);
|
|
int number = res.first;
|
|
bool needZero = res.second;
|
|
if (needZero) {
|
|
#ifdef MNN_USE_SSE
|
|
::memset(colAddr, mMutableResource.mInputZeroPoint + 128, col_buffer_size);
|
|
#else
|
|
::memset(colAddr, mMutableResource.mInputZeroPoint, col_buffer_size);
|
|
#endif
|
|
}
|
|
info[0] = number;
|
|
if (number > 0) {
|
|
blitProc(colAddr, srcPtr, info, el);
|
|
}
|
|
auto outputInTilePtr = outputDataPtr + xIndexStart * PackUnit * dstBytes;
|
|
auto colAddrTemp = colAddr;
|
|
do {
|
|
int step = ALIMIN(DST_XUNIT, realDstCount);
|
|
mGemmKernel(outputInTilePtr, colAddrTemp, weightDataPtr, kernelCountUnitDouble, dstZStep * dstBytes, ocDiv4, &quanParam, step);
|
|
realDstCount-=step;
|
|
outputInTilePtr += DST_XUNIT * PackUnit * dstBytes;
|
|
colAddrTemp += col_buffer_unit_size;
|
|
} while(realDstCount > 0);
|
|
}
|
|
};
|
|
MNN_CONCURRENCY_BEGIN(tId, mThreadNums) {
|
|
threadFunction((int)tId);
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
// MNN_PRINT("dense conv2d int8 execute: cost time: %llu us\n", kernelTimer.durationInUs());
|
|
return NO_ERROR;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace MNN
|