mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			142 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			142 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUDequantize.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/08/02.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUDequantize.hpp"
 | |
| #include <math.h>
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| #define UNIT 4
 | |
| #define TILE 2
 | |
| 
 | |
| extern "C" {
 | |
| void dequantizeMinFirst(uint8_t* input, float* output, float* rangeScale, float* resultAdd, size_t lengthUnit) {
 | |
|     for (int i = 0; i < lengthUnit; i++) {
 | |
|         for (int m = 0; m < TILE; m++) {
 | |
|             for (int j = 0; j < UNIT; j++) {
 | |
|                 output[i * UNIT * TILE + m * UNIT + j] =
 | |
|                     (float)input[i * UNIT * TILE + m * UNIT + j] * (*rangeScale) + (*resultAdd);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| }
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| template <typename T>
 | |
| CPUDequantize<T>::CPUDequantize(Backend* backend, QuantizeMode mode, const Op* op) :  Execution(backend), mMode(mode) {
 | |
|     auto param = op->main_as_Dequantize();
 | |
|     mIsLiteDequantize = param->modelFormat() == ModeFormat_TFLITE;
 | |
|     mZeroPoint = param->inputQuantizedParam()->zeroPoint();
 | |
|     mScale = param->inputQuantizedParam()->scale();
 | |
|     mHalfRange = !std::is_signed<T>::value ? 0.0f
 | |
|                                            : (static_cast<double>(std::numeric_limits<T>::max()) -
 | |
|                                               static_cast<double>(std::numeric_limits<T>::min()) + 1) /
 | |
|                                                  2.0f;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| ErrorCode CPUDequantize<T>::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto input = inputs[0];
 | |
|     auto output = outputs[0];
 | |
|     
 | |
|     T* src       = (T*)input->host<T>();
 | |
|     auto dest    = output->host<float>();
 | |
|     
 | |
|     if(mIsLiteDequantize){
 | |
|         const int elements = input->elementSize();
 | |
|         
 | |
|         for(int i = 0; i < elements; ++i){
 | |
|             dest[i] = mScale * (static_cast<int32_t>(src[i]) - mZeroPoint);
 | |
|         }
 | |
|         
 | |
|         return NO_ERROR;
 | |
|     }
 | |
|     
 | |
|     const float minRange = inputs[1]->host<float>()[0];
 | |
|     const float maxRange = inputs[2]->host<float>()[0];
 | |
|     
 | |
|     int length   = 1;
 | |
|     for (int i = 0; i < input->buffer().dimensions; i++) {
 | |
|         length *= input->buffer().dim[i].extent;
 | |
|     }
 | |
| 
 | |
|     if (mMode == QuantizeMode_MIN_COMBINED) {
 | |
|         const float scaleFactor = (maxRange - minRange) / (static_cast<double>(std::numeric_limits<T>::max()) -
 | |
|                                                            static_cast<double>(std::numeric_limits<T>::min()));
 | |
|         for (int i = 0; i < length; i++) {
 | |
|             dest[i] = ((static_cast<int>(src[i]) + mHalfRange) * scaleFactor) + minRange;
 | |
|         }
 | |
|     } else if (mMode == QuantizeMode_MIN_FIRST) {
 | |
|         if (std::is_same<T, uint8_t>::value) {
 | |
|             constexpr int numberOfBits      = sizeof(T) * 8;
 | |
|             constexpr int64_t numberOfSteps = static_cast<int64_t>(1) << numberOfBits;
 | |
|             float rangeScale                = (maxRange - minRange) / (numberOfSteps - 1.0);
 | |
|             float rangeMinRounded = maxRange == minRange ? minRange : round(minRange / rangeScale) * rangeScale;
 | |
|             float lowestQuantized = static_cast<float>(std::numeric_limits<T>::lowest());
 | |
|             float resultAdd       = (rangeMinRounded - lowestQuantized * rangeScale);
 | |
| 
 | |
|             int32_t lengthUnit = length / (UNIT * TILE);
 | |
|             int32_t remain     = length - (lengthUnit * UNIT * TILE);
 | |
|             dequantizeMinFirst((uint8_t*)src, (float*)dest, &rangeScale, &resultAdd, lengthUnit);
 | |
|             if (remain > 0) {
 | |
|                 int32_t currentIndex = lengthUnit * UNIT * TILE;
 | |
|                 for (int i = 0; i < remain; i++) {
 | |
|                     dest[currentIndex + i] = (float)src[i] * rangeScale + resultAdd;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             constexpr int numberOfBits      = sizeof(T) * 8;
 | |
|             constexpr int64_t numberOfSteps = static_cast<int64_t>(1) << numberOfBits;
 | |
|             float rangeScale                = (maxRange - minRange) / (numberOfSteps - 1.0);
 | |
|             float rangeMinRounded = maxRange == minRange ? minRange : round(minRange / rangeScale) * rangeScale;
 | |
|             float lowestQuantized = static_cast<float>(std::numeric_limits<T>::lowest());
 | |
|             float resultAdd       = (rangeMinRounded - lowestQuantized * rangeScale);
 | |
|             for (int i = 0; i < length; i++) {
 | |
|                 dest[i] = (float)src[i] * rangeScale + resultAdd;
 | |
|             }
 | |
|         }
 | |
|     } else if (mMode == QuantizeMode_SCALED) {
 | |
|         const float scaleFactor =
 | |
|             std::numeric_limits<T>::min() == 0
 | |
|                 ? (maxRange / std::numeric_limits<T>::max())
 | |
|                 : std::max(minRange / std::numeric_limits<T>::min(), maxRange / std::numeric_limits<T>::max());
 | |
|         for (int i = 0; i < length; i++) {
 | |
|             dest[i] = static_cast<int>(src[i]) * scaleFactor;
 | |
|         }
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUDequantizeCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const {
 | |
|         auto dequantize = op->main_as_Dequantize();
 | |
|         switch (dequantize->type()) {
 | |
|             case DataType_DT_QUINT8:
 | |
|                 return new CPUDequantize<uint8_t>(backend, dequantize->mode(), op);
 | |
|             case DataType_DT_QUINT16:
 | |
|                 return new CPUDequantize<uint16_t>(backend, dequantize->mode(), op);
 | |
|             case DataType_DT_QINT8:
 | |
|                 return new CPUDequantize<int8_t>(backend, dequantize->mode(), op);
 | |
|             case DataType_DT_QINT16:
 | |
|                 return new CPUDequantize<int16_t>(backend, dequantize->mode(), op);
 | |
|             case DataType_DT_QINT32:
 | |
|                 return new CPUDequantize<int32_t>(backend, dequantize->mode(), op);
 | |
|             default:
 | |
|                 MNN_ASSERT(false); // unsupported type
 | |
|                 return nullptr;
 | |
|         }
 | |
|     }
 | |
| };
 | |
| REGISTER_CPU_OP_CREATOR(CPUDequantizeCreator, OpType_Dequantize);
 | |
| 
 | |
| } // namespace MNN
 |