mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			235 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUSoftmax.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/07/16.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <math.h>
 | |
| #include "backend/cpu/CPUSoftmax.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "core/Concurrency.h"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| #include "CPUTensorConvert.hpp"
 | |
| #ifdef MNN_USE_NEON
 | |
| #include <arm_neon.h>
 | |
| #endif
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| int CPUSoftmax::_softmax1(const float *srcData, float *dstData, int outside, int channel, int threadNum) {
 | |
|     MNN_CONCURRENCY_BEGIN(tId, threadNum)
 | |
|     {
 | |
|         const float *srcY = srcData + tId * channel;
 | |
|         float *dstY       = dstData + tId * channel;
 | |
|         for (int y = (int)tId; y < outside; y += threadNum, srcY += channel * threadNum, dstY += channel * threadNum) {
 | |
|             MNNSoftmax(dstY, srcY, channel);
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     return 0;
 | |
| }
 | |
| int CPUSoftmax::_softmaxCommon(const float *srcData, float *dstData, int inside, int outside, int channel,
 | |
|                                float *maxValue, float *sumValue, int threadNum) {
 | |
|     if (inside == 1)
 | |
|         return _softmax1(srcData, dstData, outside, channel, threadNum);
 | |
| 
 | |
|     const int stepY = inside * channel;
 | |
|     MNN_CONCURRENCY_BEGIN(tId, threadNum);
 | |
|     {
 | |
|         const float *srcY  = srcData + tId * stepY;
 | |
|         float *dstY        = dstData + tId * stepY;
 | |
|         float *maxValueSub = maxValue + tId * inside;
 | |
| 
 | |
|         for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
 | |
|             memcpy(maxValueSub, srcY, sizeof(float) * inside);
 | |
|             const float *src = srcY + inside;
 | |
|             for (int c = 1; c < channel; ++c, src += inside) {
 | |
|                 for (int x = 0; x < inside; ++x) {
 | |
|                     if (src[x] > maxValueSub[x])
 | |
|                         maxValueSub[x] = src[x];
 | |
|                 }
 | |
|             }
 | |
|             src        = srcY;
 | |
|             float *dst = dstY;
 | |
|             for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
 | |
|                 for (int x = 0; x < inside; ++x) {
 | |
|                     dst[x] = -src[x] + maxValueSub[x];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
| 
 | |
|     auto totalSize = channel * inside * outside;
 | |
|     //Exp
 | |
|     auto schedule = ((CPUBackend*)backend())->multiThreadDivide(totalSize);
 | |
|     int sizeDivide = schedule.first;
 | |
|     int scheduleNumber = schedule.second;
 | |
| 
 | |
|     MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) {
 | |
|         int start = sizeDivide * (int)tId;
 | |
|         int realSize = sizeDivide;
 | |
|         if (tId == scheduleNumber -1 ) {
 | |
|             realSize = totalSize - start;
 | |
|         }
 | |
|         if (realSize > 0) {
 | |
|             float ab[2] = {
 | |
|                 -1.0f,
 | |
|                 0.0f
 | |
|             };
 | |
|             MNNExp(dstData + start, dstData + start, ab, realSize);
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     
 | |
|     MNN_CONCURRENCY_BEGIN(tId, threadNum);
 | |
|     {
 | |
|         const float *srcY  = srcData + tId * stepY;
 | |
|         float *dstY        = dstData + tId * stepY;
 | |
|         float *sumValueSub = sumValue + tId * inside;
 | |
|         for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
 | |
|             memset(sumValueSub, 0, sizeof(float) * inside);
 | |
|             float *dst = dstY;
 | |
|             for (int c = 0; c < channel; ++c, dst += inside) {
 | |
|                 for (int x = 0; x < inside; ++x) {
 | |
|                     sumValueSub[x] += dst[x];
 | |
|                 }
 | |
|             }
 | |
|             dst = dstY;
 | |
|             for (int c = 0; c < channel; ++c, dst += inside) {
 | |
|                 for (int x = 0; x < inside; ++x) {
 | |
|                     dst[x] /= sumValueSub[x];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUSoftmax::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     auto input           = inputs[0];
 | |
|     const int dimensions = input->buffer().dimensions;
 | |
|     int axis = mAxis;
 | |
|     if (axis < 0) {
 | |
|         axis += dimensions;
 | |
|     }
 | |
| 
 | |
|     const auto layout = TensorUtils::getDescribe(input)->dimensionFormat;
 | |
|     mNeedUnpackC4     = layout == MNN_DATA_FORMAT_NC4HW4;
 | |
| 
 | |
|     if (mNeedUnpackC4) {
 | |
|         int totalSize = 1;
 | |
|         for (int i = 1; i < dimensions; ++i) {
 | |
|             totalSize *= input->length(i);
 | |
|         }
 | |
|         mStorage.buffer().dim[0].extent = input->length(0);
 | |
|         mStorage.buffer().dim[1].extent = totalSize;
 | |
|         TensorUtils::getDescribe(&mStorage)->dimensionFormat = MNN_DATA_FORMAT_NHWC;
 | |
|         mStorage.buffer().dimensions    = 2;
 | |
|         mStorage.buffer().type          = input->getType();
 | |
|         backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
 | |
|     }
 | |
| 
 | |
|     int inside = 1;
 | |
|     int dims   = input->buffer().dimensions;
 | |
|     for (int i = axis + 1; i < dims; ++i) {
 | |
|         inside *= input->length(i);
 | |
|     }
 | |
| 
 | |
|     if (inside != 1) { // not run _softmax1, we need maxValue Tensor and sumValue Tensor.
 | |
|         int threadNum = ((CPUBackend *)backend())->threadNumber();
 | |
| 
 | |
|         mMaxValue.buffer().dim[0].extent = inside * threadNum;
 | |
|         mMaxValue.buffer().dimensions    = 1;
 | |
|         mMaxValue.setType(DataType_DT_FLOAT);
 | |
|         backend()->onAcquireBuffer(&mMaxValue, Backend::DYNAMIC);
 | |
| 
 | |
|         mSumValue.buffer().dim[0].extent = inside * threadNum;
 | |
|         mSumValue.buffer().dimensions    = 1;
 | |
|         mSumValue.setType(DataType_DT_FLOAT);
 | |
|         backend()->onAcquireBuffer(&mSumValue, Backend::DYNAMIC);
 | |
| 
 | |
|         backend()->onReleaseBuffer(&mMaxValue, Backend::DYNAMIC);
 | |
|         backend()->onReleaseBuffer(&mSumValue, Backend::DYNAMIC);
 | |
|     }
 | |
| 
 | |
|     if (mNeedUnpackC4) {
 | |
|         backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUSoftmax::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     MNN_ASSERT(1 == inputs.size());
 | |
|     MNN_ASSERT(1 == outputs.size());
 | |
|     auto inputTensor        = inputs[0];
 | |
|     auto outputTensor       = outputs[0];
 | |
|     const auto inputDataPtr = inputTensor->host<float>();
 | |
|     auto outputDataPtr      = outputTensor->host<float>();
 | |
|     const int batch         = inputTensor->batch();
 | |
|     const auto dims         = inputTensor->buffer().dimensions;
 | |
|     int axis = mAxis;
 | |
|     if (axis < 0) {
 | |
|         axis += inputTensor->dimensions();
 | |
|     }
 | |
| 
 | |
|     float *tempData = nullptr;
 | |
|     if (mNeedUnpackC4) {
 | |
|         tempData = mStorage.host<float>();
 | |
|     }
 | |
| 
 | |
|     int areaInput = 1;
 | |
|     for (int i = 2; i < dims; ++i) {
 | |
|         areaInput *= inputTensor->length(i);
 | |
|     }
 | |
|     int inside  = 1;
 | |
|     int outside = 1;
 | |
|     int channel = 1;
 | |
|     for (int i = 0; i < axis; ++i) {
 | |
|         outside *= inputTensor->length(i);
 | |
|     }
 | |
|     channel = inputTensor->length(axis);
 | |
|     for (int i = axis + 1; i < dims; ++i) {
 | |
|         inside *= inputTensor->length(i);
 | |
|     }
 | |
| 
 | |
|     int threadNum = ((CPUBackend *)backend())->threadNumber();
 | |
|     if (!mNeedUnpackC4) {
 | |
|         _softmaxCommon(inputDataPtr, outputDataPtr, inside, outside, channel, mMaxValue.host<float>(),
 | |
|                    mSumValue.host<float>(), threadNum);
 | |
|         return NO_ERROR;
 | |
|     }
 | |
|     auto functions = static_cast<CPUBackend*>(backend())->functions();
 | |
|     CPUTensorConverter::convert(inputDataPtr, outputDataPtr, MNN_DATA_FORMAT_NC4HW4, MNN_DATA_FORMAT_NCHW, batch, areaInput, inputTensor->channel(), functions->bytes, functions);
 | |
|     _softmaxCommon(outputDataPtr, tempData, inside, outside, channel, mMaxValue.host<float>(), mSumValue.host<float>(), threadNum);
 | |
|     CPUTensorConverter::convert(tempData, outputDataPtr, MNN_DATA_FORMAT_NCHW, MNN_DATA_FORMAT_NC4HW4, batch, areaInput, inputTensor->channel(), functions->bytes, functions);
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| CPUSoftmax::CPUSoftmax(Backend *b, int axis) : MNN::Execution(b), mAxis(axis), mStorage(2), mNeedUnpackC4(false) {
 | |
|     // nothing to do
 | |
| }
 | |
| 
 | |
| Execution* CPUSoftmax::create(const MNN::Op *op, Backend *backend) {
 | |
|     auto axis = op->main_as_Axis()->axis();
 | |
|     return new CPUSoftmax(backend, axis);
 | |
| }
 | |
| 
 | |
| class CPUSoftmaxCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const override {
 | |
|         return CPUSoftmax::create(op, backend);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUSoftmaxCreator, OpType_Softmax);
 | |
| 
 | |
| } // namespace MNN
 |