mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			191 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  OneDNNConvInt8.cpp
 | |
| //
 | |
| //
 | |
| #ifdef MNN_USE_ONEDNN
 | |
| #include "backend/cpu/OneDNNConvInt8.hpp"
 | |
| #include "core/ConvolutionCommon.hpp"
 | |
| using namespace dnnl;
 | |
| using tag = memory::format_tag;
 | |
| using dt = memory::data_type;
 | |
| 
 | |
| namespace MNN {
 | |
| OneDNNConvInt8::~OneDNNConvInt8() {
 | |
|     // Do nothing
 | |
| }
 | |
| 
 | |
| Execution* OneDNNConvInt8::create(Backend* backend, const MNN::Convolution2D* convParam, const std::vector<Tensor*>& inputs, const std::vector<Tensor *> &outputs) {
 | |
|     std::shared_ptr<OneDNNConvInt8::Resource> resource(new OneDNNConvInt8::Resource);
 | |
|     resource->backend = backend;
 | |
|     const auto convCommon             = convParam->common();
 | |
|     const auto kw                     = convCommon->kernelX();
 | |
|     const auto kh                     = convCommon->kernelY();
 | |
|     const auto ic                     = convCommon->inputCount();
 | |
|     const auto oc                     = convCommon->outputCount();
 | |
|     const auto strideX                = convCommon->strideX();
 | |
|     const auto strideY                = convCommon->strideY();
 | |
|     auto weights                      = convParam->symmetricQuan()->weight()->data();
 | |
|     auto bias                         = convParam->symmetricQuan()->bias()->data();
 | |
|     std::vector<float> scale(oc);
 | |
|     for (auto i = 0; i < scale.size(); i++) {
 | |
|         scale[i] = convParam->symmetricQuan()->scale()->data()[i];
 | |
|     }
 | |
|     const int conv_mask = 2;
 | |
|     resource->conv_attr.set_output_scales(conv_mask, scale);
 | |
|     if (convCommon->relu() || convCommon->relu6()) {
 | |
|         post_ops ops;
 | |
|         ops.append_eltwise(1.0f, algorithm::eltwise_relu, 0.0f, 0.0f);
 | |
|         resource->conv_attr.set_post_ops(ops);
 | |
|     }
 | |
|     auto eng = engine(engine::kind::cpu, 0);
 | |
|     resource->eng = eng;
 | |
|     auto stm = stream(eng);
 | |
|     memory::dims conv_weights_tz = {oc, ic, kh, kw};
 | |
|     memory::dims conv_bias_tz = {oc};
 | |
|     memory::dims conv_strides = {strideX, strideY};
 | |
|     memory::dims conv_src_tz = {1, ic, convCommon->strideY() + (kh - 1) * convCommon->dilateY() + 1, (kw - 1) * convCommon->dilateX() + 1 + convCommon->strideX()};
 | |
|     memory::dims conv_dst_tz = {1, oc, 2, 2};
 | |
|     memory::dims conv_padding = {0, 0};
 | |
| 
 | |
|     auto user_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::oihw);
 | |
| 
 | |
|     auto conv_src_md = memory::desc({conv_src_tz}, dt::s8, tag::any);
 | |
|     auto conv_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::any);
 | |
|     auto conv_bias_md = memory::desc({conv_bias_tz}, dt::s32, tag::a);
 | |
|     auto conv_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::any);
 | |
| 
 | |
|     auto conv_desc = convolution_forward::desc(prop_kind::forward_inference,
 | |
|         algorithm::convolution_auto, conv_src_md, conv_weights_md, conv_bias_md,
 | |
|         conv_dst_md, conv_strides, conv_padding, conv_padding);
 | |
|     auto conv_pd = convolution_forward::primitive_desc(conv_desc, resource->conv_attr, eng);
 | |
|     auto weightSrc = convParam->symmetricQuan()->weight()->data();
 | |
|     resource->mWeight.reset(Tensor::createDevice<int8_t>({(int)conv_pd.weights_desc().get_size()}));
 | |
|     resource->mBias.reset(Tensor::createDevice<int32_t>({(int)convParam->symmetricQuan()->bias()->size()}));
 | |
|     auto res = backend->onAcquireBuffer(resource->mWeight.get(), Backend::STATIC);
 | |
|     res = res && backend->onAcquireBuffer(resource->mBias.get(), Backend::STATIC);
 | |
|     if (!res) {
 | |
|         return nullptr;
 | |
|     }
 | |
|     std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
 | |
|     if (convParam->quanParameter() != nullptr) {
 | |
|         quanCommon = ConvolutionCommon::load(convParam->quanParameter(), false);
 | |
|         weightSrc = quanCommon->weight.get();
 | |
|     }
 | |
|     auto user_weights = memory(user_weights_md, eng, (int8_t*)weightSrc);
 | |
|     auto conv_weights = memory(conv_pd.weights_desc(), eng, resource->mWeight->host<int8_t>());
 | |
|     auto r_pd = reorder::primitive_desc(user_weights, conv_weights);
 | |
|     reorder(r_pd).execute(stm, user_weights, conv_weights);
 | |
|     ::memcpy(resource->mBias->host<int32_t>(), convParam->symmetricQuan()->bias()->data(), convParam->symmetricQuan()->bias()->size() * sizeof(int32_t));
 | |
|     resource->conv_bias = memory(conv_bias_md, eng, resource->mBias->host<int32_t>());
 | |
|     resource->conv_weights = conv_weights;
 | |
|     return new OneDNNConvInt8(resource, convCommon, backend);
 | |
| }
 | |
| 
 | |
| OneDNNConvInt8::OneDNNConvInt8(std::shared_ptr<OneDNNConvInt8::Resource> resource, const MNN::Convolution2DCommon* common, Backend* bn) : CPUConvolution(common, bn) {
 | |
|     mResource = resource;
 | |
|     stm = stream(mResource->eng);
 | |
| }
 | |
| 
 | |
| bool OneDNNConvInt8::onClone(Backend* bn, const Op* op, Execution** dst) {
 | |
|     if (nullptr == dst) {
 | |
|         return true;
 | |
|     }
 | |
|     auto dstExe = new OneDNNConvInt8(mResource, op->main_as_Convolution2D()->common(), bn);
 | |
|     *dst = dstExe;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ErrorCode OneDNNConvInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     const auto convCommon             = mCommon;
 | |
|     const auto kw                     = convCommon->kernelX();
 | |
|     const auto kh                     = convCommon->kernelY();
 | |
|     const auto ic                     = convCommon->inputCount();
 | |
|     const auto oc                     = convCommon->outputCount();
 | |
|     const auto strideX                = convCommon->strideX();
 | |
|     const auto strideY                = convCommon->strideY();
 | |
|     const auto ih                     = inputs[0]->height();
 | |
|     const auto iw                     = inputs[0]->width();
 | |
|     const auto oh                     = outputs[0]->height();
 | |
|     const auto ow                     = outputs[0]->width();
 | |
|     auto pads = ConvolutionCommon::convolutionPadFull(inputs[0], outputs[0], mCommon);
 | |
| 
 | |
|     memory::dims conv_src_tz = {inputs[0]->batch(), ic, ih, iw};
 | |
|     memory::dims conv_weights_tz = {oc, ic, kh, kw};
 | |
|     memory::dims conv_bias_tz = {oc};
 | |
|     memory::dims conv_dst_tz = {outputs[0]->batch(), oc, oh, ow};
 | |
|     memory::dims conv_strides = {strideX, strideY};
 | |
| 
 | |
|     auto user_src_md = memory::desc({conv_src_tz}, dt::s8, tag::nChw4c);
 | |
|     auto user_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::oihw);
 | |
|     auto user_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::nChw4c);
 | |
| 
 | |
|     auto conv_src_md = memory::desc({conv_src_tz}, dt::s8, tag::any);
 | |
|     auto conv_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::any);
 | |
| 
 | |
|     user_src = memory(user_src_md, mResource->eng, inputs[0]->host<int8_t>());
 | |
|     user_dst = memory(user_dst_md, mResource->eng, outputs[0]->host<int8_t>());
 | |
|     mSrcTemp = nullptr;
 | |
|     mDstTemp = nullptr;
 | |
| 
 | |
|     // Fix weight desc and bias desc
 | |
|     auto conv_desc = convolution_forward::desc(prop_kind::forward_inference,
 | |
|         algorithm::convolution_auto, conv_src_md, mResource->conv_weights.get_desc(), mResource->conv_bias.get_desc(),
 | |
|                                                conv_dst_md, conv_strides, {std::get<1>(pads), std::get<0>(pads)}, {std::get<3>(pads), std::get<2>(pads)});
 | |
|     auto conv_pd = convolution_forward::primitive_desc(conv_desc, mResource->conv_attr, mResource->eng);
 | |
|     conv = convolution_forward(conv_pd);
 | |
|     mSrcTemp = nullptr;
 | |
|     mDstTemp = nullptr;
 | |
|     if (conv_pd.src_desc() != user_src.get_desc()) {
 | |
|         auto needSize = conv_pd.src_desc().get_size();
 | |
|         mSrcTemp.reset(Tensor::createDevice<int8_t>({(int)needSize}));
 | |
|         auto res = backend()->onAcquireBuffer(mSrcTemp.get(), Backend::DYNAMIC);
 | |
|         if (!res) {
 | |
|             return OUT_OF_MEMORY;
 | |
|         }
 | |
|         conv_src = memory(conv_pd.src_desc(), mResource->eng, mSrcTemp->host<int8_t>());
 | |
|     }
 | |
|     if (conv_pd.dst_desc() != user_dst.get_desc()) {
 | |
|         auto needSize = conv_pd.dst_desc().get_size();
 | |
|         mDstTemp.reset(Tensor::createDevice<int8_t>({(int)needSize}));
 | |
|         auto res = backend()->onAcquireBuffer(mDstTemp.get(), Backend::DYNAMIC);
 | |
|         if (!res) {
 | |
|             return OUT_OF_MEMORY;
 | |
|         }
 | |
|         conv_dst = memory(conv_pd.dst_desc(), mResource->eng, mDstTemp->host<int8_t>());
 | |
|     }
 | |
|     if (nullptr != mSrcTemp) {
 | |
|         backend()->onReleaseBuffer(mSrcTemp.get(), Backend::DYNAMIC);
 | |
|     }
 | |
|     if (nullptr != mDstTemp) {
 | |
|         backend()->onReleaseBuffer(mDstTemp.get(), Backend::DYNAMIC);
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode OneDNNConvInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     const auto input = inputs[0];
 | |
|     auto output      = outputs[0];
 | |
| 
 | |
|     memory conv_src_temp = user_src;
 | |
|     if (nullptr != mSrcTemp) {
 | |
|         auto r_pd = reorder::primitive_desc(user_src, conv_src);
 | |
|         reorder(r_pd).execute(stm, user_src, conv_src);
 | |
|         conv_src_temp = conv_src;
 | |
|     }
 | |
|     memory conv_dst_temp = user_dst;
 | |
|     if (nullptr != mDstTemp) {
 | |
|         conv_dst_temp = conv_dst;
 | |
|     }
 | |
|     conv.execute(stm, {{DNNL_ARG_SRC, conv_src_temp},
 | |
|                        {DNNL_ARG_WEIGHTS, mResource->conv_weights},
 | |
|                        {DNNL_ARG_BIAS, mResource->conv_bias},
 | |
|                        {DNNL_ARG_DST, conv_dst_temp}});
 | |
|     if (nullptr != mDstTemp) {
 | |
|         auto r_pd = reorder::primitive_desc(conv_dst, user_dst);
 | |
|         reorder(r_pd).execute(stm, conv_dst, user_dst);
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| } // namespace MNN
 | |
| #endif
 |