MNN/source/backend/cpu/CPUQuantizedReshape.cpp

56 lines
1.7 KiB
C++

//
// CPUQuantizedReshape.cpp
// MNN
//
// Created by MNN on 2018/08/09.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUQuantizedReshape.hpp"
#include "CommonOptFunction.h"
#include "Macro.h"
namespace MNN {
CPUQuantizedReshape::CPUQuantizedReshape(const MNN::Op *op, Backend *b) : MNN::Execution(b) {
auto param = op->main_as_QuantizedReshape();
mIstflite = param->modelFormat() == MNN::ModeFormat_TFLITE;
}
ErrorCode CPUQuantizedReshape::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
return NO_ERROR;
}
ErrorCode CPUQuantizedReshape::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(3 == inputs.size() || 4 == inputs.size() || 1 == inputs.size());
MNN_ASSERT(3 == outputs.size() || inputs.size() == 1);
auto &input = inputs[0]->buffer();
auto &output = outputs[0]->buffer();
MNN_ASSERT(input.dimensions <= 1 || input.dim[1].flags == 0);
if (input.dimensions <= 1 || input.dim[1].flags == 0) {
::memcpy(output.host, input.host, inputs[0]->size());
}
if (mIstflite == false) {
((float *)(outputs[1]->buffer().host))[0] = inputs[2]->host<float>()[0];
((float *)(outputs[2]->buffer().host))[0] = inputs[3]->host<float>()[0];
}
return NO_ERROR;
}
class CPUQuantizedReshapeCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new CPUQuantizedReshape(op, backend);
}
};
REGISTER_CPU_OP_CREATOR(CPUQuantizedReshapeCreator, OpType_QuantizedReshape);
} // namespace MNN