mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			179 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			179 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  VulkanDeconvolution.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/31.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "VulkanDeconvolution.hpp"
 | |
| #include "Macro.h"
 | |
| namespace MNN {
 | |
| VulkanDeconvolution::VulkanDeconvolution(Backend* bn, const Convolution2D* conv) : VulkanBasicExecution(bn) {
 | |
|     mConvCommonOption = conv->common();
 | |
|     auto vkBn         = (VulkanBackend*)bn;
 | |
|     int outputC4      = UP_DIV(mConvCommonOption->outputCount(), 4);
 | |
|     mBias             = std::make_shared<VulkanImage>(vkBn->getMemoryPool(), false, std::vector<int>{outputC4, 1});
 | |
|     {
 | |
|         auto biasBuffer = std::make_shared<VulkanBuffer>(vkBn->getMemoryPool(), false, outputC4 * 4 * sizeof(float));
 | |
|         auto biasPtr    = biasBuffer->map();
 | |
|         ::memset(biasPtr, 0, outputC4 * 4 * sizeof(float));
 | |
|         ::memcpy(biasPtr, conv->bias()->data(), conv->bias()->size() * sizeof(float));
 | |
|         biasBuffer->unmap();
 | |
|         vkBn->copyBufferToImage(biasBuffer.get(), mBias.get());
 | |
|     }
 | |
|     mConvParam = std::make_shared<VulkanBuffer>(vkBn->getMemoryPool(), false,
 | |
|                                                 sizeof(VulkanConvolutionCommon::ConvolutionParameter), nullptr,
 | |
|                                                 VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
 | |
|     int kh     = mConvCommonOption->kernelY();
 | |
|     int kw     = mConvCommonOption->kernelX();
 | |
|     int co     = mConvCommonOption->outputCount();
 | |
|     int ci     = conv->weight()->size() / kh / kw / co;
 | |
|     int ciC4   = UP_DIV(ci, 4);
 | |
| 
 | |
|     const int alignedWeightSize = ALIGN_UP4(ci) * kh * kw * ALIGN_UP4(co);
 | |
|     // std::make_unique need c++14
 | |
|     // std::shared_ptr does not support array
 | |
|     std::unique_ptr<float[]> tempReorderWeight(new float[alignedWeightSize]);
 | |
|     ::memset(tempReorderWeight.get(), 0, alignedWeightSize * sizeof(float));
 | |
| 
 | |
|     auto tempWeight = conv->weight()->data();
 | |
|     for (int b = 0; b < co; ++b) {
 | |
|         int b_4      = b / 4;
 | |
|         float* dst_b = tempReorderWeight.get() + b_4 * 16 * kw * kh * ciC4;
 | |
|         int mx       = b % 4;
 | |
|         for (int d = 0; d < ci; ++d) {
 | |
|             int my       = d % 4;
 | |
|             int d_4      = d / 4;
 | |
|             float* dst_d = dst_b + d_4 * 16;
 | |
|             for (int y = 0; y < kh; ++y) {
 | |
|                 float* dst_y = dst_d + y * kw * 16 * ciC4;
 | |
|                 for (int x = 0; x < kw; ++x) {
 | |
|                     float* dst_x       = dst_y + x * 16 * ciC4;
 | |
|                     dst_x[4 * my + mx] = tempWeight[x + y * kw + b * kw * kh + d * kw * kh * co];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     mMultiler =
 | |
|         std::make_shared<VulkanMatrixMultier>(vkBn, tempReorderWeight.get(), ALIGN_UP4(ci), ALIGN_UP4(co) * kh * kw);
 | |
| 
 | |
|     {
 | |
|         std::vector<VkDescriptorType> im2ColTypes{
 | |
|             VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
 | |
|             VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
 | |
|             VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
 | |
|             VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
 | |
|         };
 | |
|         auto macro = VulkanConvolutionCommon::getPostTreatMacro(mConvCommonOption);
 | |
|         mIm2Col    = vkBn->getPipeline("glsl_deconvIm2Col_" + macro + "comp", im2ColTypes);
 | |
|         mIm2ColSet.reset(mIm2Col->createSet());
 | |
|     }
 | |
|     {
 | |
|         std::vector<VkDescriptorType> col2ImTypes{
 | |
|             VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
 | |
|             VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
 | |
|             VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
 | |
|         };
 | |
|         mCol2Im = vkBn->getPipeline("glsl_deconvCol2Im_comp", col2ImTypes);
 | |
|         mCol2ImSet.reset(mCol2Im->createSet());
 | |
|     }
 | |
|     mSampler = vkBn->getCommonSampler();
 | |
| }
 | |
| 
 | |
| void VulkanDeconvolution::writeConvolutionConst(VulkanConvolutionCommon::ConvolutionParameter* convCons,
 | |
|                                                 const Convolution2DCommon* common, const Tensor* src,
 | |
|                                                 const Tensor* dst) {
 | |
|     const int icDiv4 = UP_DIV(src->channel(), 4);
 | |
|     const int ocDiv4 = UP_DIV(dst->channel(), 4);
 | |
|     int padX         = common->padX();
 | |
|     int padY         = common->padY();
 | |
| 
 | |
|     if (common->padMode() == PadMode_SAME) {
 | |
|         int output_width  = dst->width();
 | |
|         int output_height = dst->height();
 | |
| 
 | |
|         int output_width_padded  = (src->width() - 1) * common->strideX() + common->kernelX();
 | |
|         int output_height_padded = (src->height() - 1) * common->strideY() + common->kernelY();
 | |
| 
 | |
|         int pad_needed_width  = output_width_padded - output_width;
 | |
|         int pad_needed_height = output_height_padded - output_height;
 | |
| 
 | |
|         padX = pad_needed_width / 2;
 | |
|         padY = pad_needed_height / 2;
 | |
|     }
 | |
|     convCons->batch         = src->batch();
 | |
|     convCons->dilate[0]     = common->dilateX();
 | |
|     convCons->dilate[1]     = common->dilateY();
 | |
|     convCons->stride[0]     = common->strideX();
 | |
|     convCons->stride[1]     = common->strideY();
 | |
|     convCons->pad[0]        = padX;
 | |
|     convCons->pad[1]        = padY;
 | |
|     convCons->kernelSize[0] = common->kernelX();
 | |
|     convCons->kernelSize[1] = common->kernelY();
 | |
| 
 | |
|     convCons->inputSize[0] = src->width();
 | |
|     convCons->inputSize[1] = src->height();
 | |
|     convCons->inputSize[2] = icDiv4;
 | |
|     convCons->inputSize[3] = src->batch();
 | |
| 
 | |
|     convCons->outputSize[0] = dst->width();
 | |
|     convCons->outputSize[1] = dst->height();
 | |
|     convCons->outputSize[2] = ocDiv4;
 | |
|     convCons->outputSize[3] = dst->batch();
 | |
|     convCons->group         = convCons->group;
 | |
| }
 | |
| 
 | |
| ErrorCode VulkanDeconvolution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                         const VulkanCommandPool::Buffer* cmdBuffer) {
 | |
|     auto src         = inputs[0];
 | |
|     auto dst         = outputs[0];
 | |
|     const int icDiv4 = UP_DIV(src->channel(), 4);
 | |
|     const int ocDiv4 = UP_DIV(dst->channel(), 4);
 | |
|     {
 | |
|         auto convCons = reinterpret_cast<VulkanConvolutionCommon::ConvolutionParameter*>(mConvParam->map());
 | |
|         writeConvolutionConst(convCons, mConvCommonOption, src, dst);
 | |
|         mConvParam->unmap();
 | |
|     }
 | |
| 
 | |
|     mMultiler->prepare(src->width() * src->height() * src->batch());
 | |
|     if (true) {
 | |
|         auto dstImage = mMultiler->source();
 | |
|         mCol2ImSet->writeImage((reinterpret_cast<VkImageView>(src->deviceId())), mSampler->get(),
 | |
|                                VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 0);
 | |
|         mCol2ImSet->writeImage(dstImage->view(), mSampler->get(), VK_IMAGE_LAYOUT_GENERAL, 1);
 | |
| 
 | |
|         mCol2ImSet->writeBuffer(mConvParam->buffer(), 2, mConvParam->size());
 | |
|         mCol2Im->bind(cmdBuffer->get(), mCol2ImSet->get());
 | |
|         vkCmdDispatch(cmdBuffer->get(), UP_DIV(src->width(), 16), UP_DIV(src->height(), 16), icDiv4 * src->batch());
 | |
|     }
 | |
| 
 | |
|     mMultiler->compute(cmdBuffer);
 | |
|     if (true) {
 | |
|         auto dstImage = mMultiler->dest();
 | |
|         mIm2ColSet->writeImage((reinterpret_cast<VkImageView>(dst->deviceId())), mSampler->get(),
 | |
|                                VK_IMAGE_LAYOUT_GENERAL, 0);
 | |
|         mIm2ColSet->writeImage(dstImage->view(), mSampler->get(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1);
 | |
|         mIm2ColSet->writeImage(mBias->view(), mSampler->get(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 2);
 | |
|         mIm2ColSet->writeBuffer(mConvParam->buffer(), 3, mConvParam->size());
 | |
|         mIm2Col->bind(cmdBuffer->get(), mIm2ColSet->get());
 | |
|         cmdBuffer->barrierImage(dstImage->get(), VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
 | |
|         vkCmdDispatch(cmdBuffer->get(), UP_DIV(dst->width(), 16), UP_DIV(dst->height(), 16), ocDiv4 * dst->batch());
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| class VulkanDeconvolutionCreator : public VulkanBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const MNN::Op* op,
 | |
|                                 Backend* backend) const override {
 | |
|         return new VulkanDeconvolution(backend, op->main_as_Convolution2D());
 | |
|     }
 | |
| };
 | |
| 
 | |
| static bool gResistor = []() {
 | |
|     VulkanBackend::addCreator(OpType_Deconvolution, new VulkanDeconvolutionCreator);
 | |
|     return true;
 | |
| }();
 | |
| } // namespace MNN
 |