MNN/source/backend/vulkan/execution/VulkanDeconvolution.cpp

179 lines
7.8 KiB
C++

//
// VulkanDeconvolution.cpp
// MNN
//
// Created by MNN on 2019/01/31.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "VulkanDeconvolution.hpp"
#include "Macro.h"
namespace MNN {
VulkanDeconvolution::VulkanDeconvolution(Backend* bn, const Convolution2D* conv) : VulkanBasicExecution(bn) {
mConvCommonOption = conv->common();
auto vkBn = (VulkanBackend*)bn;
int outputC4 = UP_DIV(mConvCommonOption->outputCount(), 4);
mBias = std::make_shared<VulkanImage>(vkBn->getMemoryPool(), false, std::vector<int>{outputC4, 1});
{
auto biasBuffer = std::make_shared<VulkanBuffer>(vkBn->getMemoryPool(), false, outputC4 * 4 * sizeof(float));
auto biasPtr = biasBuffer->map();
::memset(biasPtr, 0, outputC4 * 4 * sizeof(float));
::memcpy(biasPtr, conv->bias()->data(), conv->bias()->size() * sizeof(float));
biasBuffer->unmap();
vkBn->copyBufferToImage(biasBuffer.get(), mBias.get());
}
mConvParam = std::make_shared<VulkanBuffer>(vkBn->getMemoryPool(), false,
sizeof(VulkanConvolutionCommon::ConvolutionParameter), nullptr,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
int kh = mConvCommonOption->kernelY();
int kw = mConvCommonOption->kernelX();
int co = mConvCommonOption->outputCount();
int ci = conv->weight()->size() / kh / kw / co;
int ciC4 = UP_DIV(ci, 4);
const int alignedWeightSize = ALIGN_UP4(ci) * kh * kw * ALIGN_UP4(co);
// std::make_unique need c++14
// std::shared_ptr does not support array
std::unique_ptr<float[]> tempReorderWeight(new float[alignedWeightSize]);
::memset(tempReorderWeight.get(), 0, alignedWeightSize * sizeof(float));
auto tempWeight = conv->weight()->data();
for (int b = 0; b < co; ++b) {
int b_4 = b / 4;
float* dst_b = tempReorderWeight.get() + b_4 * 16 * kw * kh * ciC4;
int mx = b % 4;
for (int d = 0; d < ci; ++d) {
int my = d % 4;
int d_4 = d / 4;
float* dst_d = dst_b + d_4 * 16;
for (int y = 0; y < kh; ++y) {
float* dst_y = dst_d + y * kw * 16 * ciC4;
for (int x = 0; x < kw; ++x) {
float* dst_x = dst_y + x * 16 * ciC4;
dst_x[4 * my + mx] = tempWeight[x + y * kw + b * kw * kh + d * kw * kh * co];
}
}
}
}
mMultiler =
std::make_shared<VulkanMatrixMultier>(vkBn, tempReorderWeight.get(), ALIGN_UP4(ci), ALIGN_UP4(co) * kh * kw);
{
std::vector<VkDescriptorType> im2ColTypes{
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
};
auto macro = VulkanConvolutionCommon::getPostTreatMacro(mConvCommonOption);
mIm2Col = vkBn->getPipeline("glsl_deconvIm2Col_" + macro + "comp", im2ColTypes);
mIm2ColSet.reset(mIm2Col->createSet());
}
{
std::vector<VkDescriptorType> col2ImTypes{
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
};
mCol2Im = vkBn->getPipeline("glsl_deconvCol2Im_comp", col2ImTypes);
mCol2ImSet.reset(mCol2Im->createSet());
}
mSampler = vkBn->getCommonSampler();
}
void VulkanDeconvolution::writeConvolutionConst(VulkanConvolutionCommon::ConvolutionParameter* convCons,
const Convolution2DCommon* common, const Tensor* src,
const Tensor* dst) {
const int icDiv4 = UP_DIV(src->channel(), 4);
const int ocDiv4 = UP_DIV(dst->channel(), 4);
int padX = common->padX();
int padY = common->padY();
if (common->padMode() == PadMode_SAME) {
int output_width = dst->width();
int output_height = dst->height();
int output_width_padded = (src->width() - 1) * common->strideX() + common->kernelX();
int output_height_padded = (src->height() - 1) * common->strideY() + common->kernelY();
int pad_needed_width = output_width_padded - output_width;
int pad_needed_height = output_height_padded - output_height;
padX = pad_needed_width / 2;
padY = pad_needed_height / 2;
}
convCons->batch = src->batch();
convCons->dilate[0] = common->dilateX();
convCons->dilate[1] = common->dilateY();
convCons->stride[0] = common->strideX();
convCons->stride[1] = common->strideY();
convCons->pad[0] = padX;
convCons->pad[1] = padY;
convCons->kernelSize[0] = common->kernelX();
convCons->kernelSize[1] = common->kernelY();
convCons->inputSize[0] = src->width();
convCons->inputSize[1] = src->height();
convCons->inputSize[2] = icDiv4;
convCons->inputSize[3] = src->batch();
convCons->outputSize[0] = dst->width();
convCons->outputSize[1] = dst->height();
convCons->outputSize[2] = ocDiv4;
convCons->outputSize[3] = dst->batch();
convCons->group = convCons->group;
}
ErrorCode VulkanDeconvolution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const VulkanCommandPool::Buffer* cmdBuffer) {
auto src = inputs[0];
auto dst = outputs[0];
const int icDiv4 = UP_DIV(src->channel(), 4);
const int ocDiv4 = UP_DIV(dst->channel(), 4);
{
auto convCons = reinterpret_cast<VulkanConvolutionCommon::ConvolutionParameter*>(mConvParam->map());
writeConvolutionConst(convCons, mConvCommonOption, src, dst);
mConvParam->unmap();
}
mMultiler->prepare(src->width() * src->height() * src->batch());
if (true) {
auto dstImage = mMultiler->source();
mCol2ImSet->writeImage((reinterpret_cast<VkImageView>(src->deviceId())), mSampler->get(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 0);
mCol2ImSet->writeImage(dstImage->view(), mSampler->get(), VK_IMAGE_LAYOUT_GENERAL, 1);
mCol2ImSet->writeBuffer(mConvParam->buffer(), 2, mConvParam->size());
mCol2Im->bind(cmdBuffer->get(), mCol2ImSet->get());
vkCmdDispatch(cmdBuffer->get(), UP_DIV(src->width(), 16), UP_DIV(src->height(), 16), icDiv4 * src->batch());
}
mMultiler->compute(cmdBuffer);
if (true) {
auto dstImage = mMultiler->dest();
mIm2ColSet->writeImage((reinterpret_cast<VkImageView>(dst->deviceId())), mSampler->get(),
VK_IMAGE_LAYOUT_GENERAL, 0);
mIm2ColSet->writeImage(dstImage->view(), mSampler->get(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1);
mIm2ColSet->writeImage(mBias->view(), mSampler->get(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 2);
mIm2ColSet->writeBuffer(mConvParam->buffer(), 3, mConvParam->size());
mIm2Col->bind(cmdBuffer->get(), mIm2ColSet->get());
cmdBuffer->barrierImage(dstImage->get(), VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
vkCmdDispatch(cmdBuffer->get(), UP_DIV(dst->width(), 16), UP_DIV(dst->height(), 16), ocDiv4 * dst->batch());
}
return NO_ERROR;
}
class VulkanDeconvolutionCreator : public VulkanBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const MNN::Op* op,
Backend* backend) const override {
return new VulkanDeconvolution(backend, op->main_as_Convolution2D());
}
};
static bool gResistor = []() {
VulkanBackend::addCreator(OpType_Deconvolution, new VulkanDeconvolutionCreator);
return true;
}();
} // namespace MNN