mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			869 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			869 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  GeometryLSTM.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2020/07/02.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "geometry/GeometryComputer.hpp"
 | |
| #include "geometry/GeometryComputerUtils.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include <cmath>
 | |
| 
 | |
| namespace MNN {
 | |
| static void easyUnaryEncode(const std::vector<int>& indexes, UnaryOpOperation opType, LoopParamT* loop, int length) {
 | |
|     std::unique_ptr<RegionCommandT> rcmd(new RegionCommandT);
 | |
|     rcmd->size = {1, 1, length};
 | |
|     rcmd->indexes = indexes;
 | |
|     rcmd->iterIndexes = {-1, -1};
 | |
|     rcmd->steps = {0, 0};
 | |
|     rcmd->view.resize(2);
 | |
|     rcmd->view[1].reset(new ViewT);
 | |
|     rcmd->view[1]->offset = 0;
 | |
|     rcmd->view[1]->stride = {0, 0, 1};
 | |
|     rcmd->view[0].reset(new ViewT);
 | |
|     rcmd->view[0]->offset = 0;
 | |
|     rcmd->view[0]->stride = {0, 0, 1};
 | |
|     rcmd->op.reset(new OpT);
 | |
|     rcmd->op->type = OpType_UnaryOp;
 | |
|     rcmd->op->main.type = OpParameter_UnaryOp;
 | |
|     rcmd->op->main.value = new UnaryOpT;
 | |
|     rcmd->op->main.AsUnaryOp()->opType = opType;
 | |
|     loop->commands.emplace_back(std::move(rcmd));
 | |
| }
 | |
| static void easyBinaryEncode(int length, const std::vector<int>& indexes, int opType, LoopParamT* loop, int lastOffset = 0, int outStep = 0, int outOffset = 0) {
 | |
|     std::unique_ptr<RegionCommandT> rcmd(new RegionCommandT);
 | |
|     rcmd->size = {1, 1, length};
 | |
|     rcmd->indexes = indexes;
 | |
|     rcmd->iterIndexes = {-1, -1, -1};
 | |
|     rcmd->steps = {outStep, 0, 0};
 | |
|     rcmd->view.resize(3);
 | |
|     rcmd->view[1].reset(new ViewT);
 | |
|     rcmd->view[1]->offset = 0;
 | |
|     rcmd->view[1]->stride = {0, 0, 1};
 | |
|     rcmd->view[2].reset(new ViewT);
 | |
|     rcmd->view[2]->offset = lastOffset;
 | |
|     rcmd->view[2]->stride = {0, 0, 1};
 | |
|     rcmd->view[0].reset(new ViewT);
 | |
|     rcmd->view[0]->offset = outOffset;
 | |
|     rcmd->view[0]->stride = {0, 0, 1};
 | |
|     rcmd->op.reset(new OpT);
 | |
|     rcmd->op->type = OpType_BinaryOp;
 | |
|     rcmd->op->main.type = OpParameter_BinaryOp;
 | |
|     rcmd->op->main.value = new BinaryOpT;
 | |
|     rcmd->op->main.AsBinaryOp()->opType = opType;
 | |
|     loop->commands.emplace_back(std::move(rcmd));
 | |
| }
 | |
| 
 | |
| class GeometryLSTM : public GeometryComputer {
 | |
| public:
 | |
| 
 | |
|     void _ComputeLSTMOnnx(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, Context& context,
 | |
|                           CommandBuffer& res, const LSTM* lstm, OpType type) const {
 | |
|         /* inputs:
 | |
|         X: T The input sequences packed (and potentially padded) into one 3-D tensor with the shape of [seq_length,
 | |
|         batch_size, input_size].
 | |
| 
 | |
|         W: T
 | |
|         The weight tensor for the gates. Concatenation of W[iofc] and WB[iofc] (if bidirectional) along dimension 0. The
 | |
|         tensor has shape [num_directions, 4*hidden_size, input_size].
 | |
| 
 | |
|         R: T
 | |
|         The recurrence weight tensor. Concatenation of R[iofc] and RB[iofc] (if bidirectional) along dimension 0. This
 | |
|         tensor has shape [num_directions, 4*hidden_size, hidden_size].
 | |
| 
 | |
|         B: T (optional)
 | |
|         The bias tensor for input gate. [Wb[iofc] + Rb[iofc]], and [WBb[iofc] + RBb[iofc]] (if bidirectional) along
 | |
|         dimension 0. This tensor has shape [num_directions, 4*hidden_size]. Optional: If not specified - assumed to be
 | |
|         0.
 | |
|          */
 | |
|         MNN_ASSERT(inputs.size() >= 4);
 | |
|         auto X_Input      = inputs[0];
 | |
|         auto W            = inputs[1];
 | |
|         auto R            = inputs[2];
 | |
|         auto B            = inputs[3];
 | |
|         Tensor* O_Init    = nullptr;
 | |
|         Tensor* Cell_Init = nullptr;
 | |
|         if (inputs.size() >= 5) {
 | |
|             O_Init = inputs[4];
 | |
|         }
 | |
|         if (inputs.size() >= 6) {
 | |
|             Cell_Init = inputs[5];
 | |
|         }
 | |
| 
 | |
|         /** Outputs:
 | |
|          Y: T (optional)
 | |
|          A tensor that concats all the intermediate output values of the hidden. It has shape [seq_length,
 | |
|          num_directions, batch_size, hidden_size].
 | |
| 
 | |
|          Y_h: T (optional)
 | |
|          The last output value of the hidden. It has shape [num_directions, batch_size, hidden_size].
 | |
| 
 | |
|          Y_c: T (optional)
 | |
|          The last output value of the cell. It has shape [num_directions, batch_size, hidden_size].
 | |
|          */
 | |
|         auto Y = outputs[0];
 | |
|         if (outputs.size() >= 2) {
 | |
|             TensorUtils::getDescribe(outputs[1])->regions.clear();
 | |
|             TensorUtils::getDescribe(outputs[1])->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|         }
 | |
|         if (outputs.size() >= 3) {
 | |
|             TensorUtils::getDescribe(outputs[2])->regions.clear();
 | |
|             TensorUtils::getDescribe(outputs[2])->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|         }
 | |
| 
 | |
|         auto seqLength     = X_Input->length(0);
 | |
|         auto inputSize     = X_Input->length(2);
 | |
|         auto batchSize     = X_Input->length(1);
 | |
|         auto hiddenSize    = Y->length(3);
 | |
|         auto numDirections = Y->length(1);
 | |
|         auto encode = [&](Tensor* X, int direction) {
 | |
|             const int N = (type == OpType_RNN ? 1 : 4);
 | |
|             // FirstPart: Gate = MatMul(X, W, B) :  N * hiddenSize, seqLength * batchSize
 | |
|             std::shared_ptr<Tensor> Gate(Tensor::createDevice<float>({seqLength * batchSize, N * hiddenSize}, Tensor::CAFFE));
 | |
|             res.extras.emplace_back(Gate);
 | |
|             {
 | |
|                 auto h = N * hiddenSize;
 | |
|                 auto e = seqLength * batchSize;
 | |
|                 auto l = inputSize;
 | |
|                 std::unique_ptr<OpT> newop(new OpT);
 | |
|                 newop->type = OpType_While;
 | |
|                 newop->main.value = new LoopParamT;
 | |
|                 newop->main.type = OpParameter_LoopParam;
 | |
|                 auto loop = newop->main.AsLoopParam();
 | |
|                 loop->tensorNumber = 4;
 | |
|                 loop->inputIndexes = {0, 1, 2};
 | |
|                 loop->outputIndexes = {3};
 | |
|                 loop->loopNumber = 1;
 | |
|                 std::unique_ptr<RegionCommandT> rcmd(new RegionCommandT);
 | |
|                 rcmd->size = {e, l, h};
 | |
|                 rcmd->view.resize(4);
 | |
|                 rcmd->view[1].reset(new ViewT);
 | |
|                 rcmd->view[1]->offset = 0;
 | |
|                 rcmd->view[1]->stride = {l, 1, 0};
 | |
|                 // W
 | |
|                 rcmd->view[2].reset(new ViewT);
 | |
|                 rcmd->view[2]->offset = direction * N * hiddenSize * inputSize;
 | |
|                 rcmd->view[2]->stride = {0, 1, l};
 | |
|                 // Bias
 | |
|                 rcmd->view[3].reset(new ViewT);
 | |
|                 rcmd->view[3]->offset = direction * N * hiddenSize;
 | |
|                 rcmd->view[3]->stride = {0, 0, 1};
 | |
| 
 | |
|                 // C
 | |
|                 rcmd->view[0].reset(new ViewT);
 | |
|                 rcmd->view[0]->offset = 0;
 | |
|                 rcmd->view[0]->stride = {h, 0, 1};
 | |
| 
 | |
|                 rcmd->indexes = {3, 0, 1, 2};// C, A, B, Bias
 | |
|                 rcmd->steps = {0, 0, 0, 0};
 | |
|                 rcmd->iterIndexes = {-1, -1, -1, -1};
 | |
|                 rcmd->op.reset(new OpT);
 | |
|                 rcmd->op->type = OpType_MatMul;
 | |
|                 rcmd->op->main.type = OpParameter_MatMul;
 | |
|                 rcmd->op->main.value = new MatMulT;
 | |
|                 rcmd->op->main.AsMatMul()->transposeB = true;
 | |
|                 rcmd->op->main.AsMatMul()->transposeA = false;
 | |
|                 loop->commands.emplace_back(std::move(rcmd));
 | |
|                 flatbuffers::FlatBufferBuilder builder;
 | |
|                 builder.Finish(Op::Pack(builder, newop.get()));
 | |
|                 auto cmd = GeometryComputerUtils::makeCommand(builder, {X, W, B}, {Gate.get()});
 | |
|                 res.command.emplace_back(std::move(cmd));
 | |
|             }
 | |
| 
 | |
|             // SecondPart: Compute outputs
 | |
|             // Initial
 | |
|             std::shared_ptr<Tensor> I(Tensor::createDevice<float>({batchSize, hiddenSize}, Tensor::CAFFE));
 | |
|             std::shared_ptr<Tensor> C(Tensor::createDevice<float>({batchSize, hiddenSize}, Tensor::CAFFE));
 | |
|             std::shared_ptr<Tensor> F(Tensor::createDevice<float>({batchSize, hiddenSize}, Tensor::CAFFE));
 | |
|             std::shared_ptr<Tensor> O(Tensor::createDevice<float>({batchSize, hiddenSize}, Tensor::CAFFE));
 | |
|             std::shared_ptr<Tensor> Cell(Tensor::createDevice<float>({batchSize, hiddenSize}, Tensor::CAFFE));
 | |
|             res.extras.insert(res.extras.end(), {I, C, F, O, Cell});
 | |
|             // First Output
 | |
|             const int I_Y = 0;
 | |
|             const int I_Cell = 1;
 | |
|             const int I_Gate = 3;
 | |
|             const int I_I = 4;
 | |
|             const int I_C = 5;
 | |
|             const int I_F = 6;
 | |
|             const int I_R = 7;
 | |
|             const int I_HR = 8;
 | |
|             const int I_Temp = 9;
 | |
|             auto subEncoder = [&](int dstIndex, UnaryOpOperation unOp, int biOp, int offsetGate, int offsetHR, LoopParamT* loop) {
 | |
|                 // Binary
 | |
|                 {
 | |
|                     std::unique_ptr<RegionCommandT> rcmd(new RegionCommandT);
 | |
|                     rcmd->size = {1, batchSize, hiddenSize};
 | |
|                     rcmd->indexes = {I_Temp, I_Gate, I_HR};
 | |
|                     rcmd->iterIndexes = {-1, -1, -1};
 | |
|                     rcmd->steps = {0, batchSize * hiddenSize * N, 0};
 | |
|                     rcmd->view.resize(3);
 | |
|                     rcmd->view[0].reset(new ViewT);
 | |
|                     rcmd->view[0]->offset = 0;
 | |
|                     rcmd->view[0]->stride = {hiddenSize * batchSize, hiddenSize, 1};
 | |
|                     rcmd->view[1].reset(new ViewT);
 | |
|                     rcmd->view[1]->offset = offsetGate;
 | |
|                     rcmd->view[1]->stride = {N * hiddenSize * seqLength * batchSize, N * hiddenSize, 1};
 | |
|                     rcmd->view[2].reset(new ViewT);
 | |
|                     rcmd->view[2]->offset = offsetHR;
 | |
|                     rcmd->view[2]->stride = {N * hiddenSize * batchSize, N * hiddenSize, 1};
 | |
|                     rcmd->op.reset(new OpT);
 | |
|                     rcmd->op->type = OpType_BinaryOp;
 | |
|                     rcmd->op->main.type = OpParameter_BinaryOp;
 | |
|                     rcmd->op->main.value = new BinaryOpT;
 | |
|                     rcmd->op->main.AsBinaryOp()->opType = biOp;
 | |
|                     loop->commands.emplace_back(std::move(rcmd));
 | |
|                 }
 | |
|                 // Unary
 | |
|                 {
 | |
|                     std::unique_ptr<RegionCommandT> rcmd(new RegionCommandT);
 | |
|                     rcmd->size = {1, 1, hiddenSize * batchSize};
 | |
|                     rcmd->indexes = {dstIndex, I_Temp};
 | |
|                     rcmd->iterIndexes = {-1, -1};
 | |
|                     rcmd->steps = {0, 0};
 | |
|                     rcmd->view.resize(2);
 | |
|                     rcmd->view[1].reset(new ViewT);
 | |
|                     rcmd->view[1]->offset = 0;
 | |
|                     rcmd->view[1]->stride = {0, 0, 1};
 | |
|                     rcmd->view[0].reset(new ViewT);
 | |
|                     rcmd->view[0]->offset = 0;
 | |
|                     rcmd->view[0]->stride = {0, 0, 1};
 | |
|                     rcmd->op.reset(new OpT);
 | |
|                     rcmd->op->type = OpType_UnaryOp;
 | |
|                     rcmd->op->main.type = OpParameter_UnaryOp;
 | |
|                     rcmd->op->main.value = new UnaryOpT;
 | |
|                     rcmd->op->main.AsUnaryOp()->opType = unOp;
 | |
|                     loop->commands.emplace_back(std::move(rcmd));
 | |
|                 }
 | |
|             };
 | |
|             std::shared_ptr<Tensor> HRTotal(Tensor::createDevice<float>({batchSize, N * hiddenSize}, Tensor::CAFFE));
 | |
|             res.extras.emplace_back(HRTotal);
 | |
|             std::shared_ptr<Tensor> Temp(Tensor::createDevice<float>({batchSize, hiddenSize}, Tensor::CAFFE));
 | |
|             res.extras.emplace_back(Temp);
 | |
| 
 | |
|             auto sequenceEncode = [&](int start, int oInit, int cellInit, LoopParamT* loop) {
 | |
|                 int pos = start;
 | |
|                 int step = hiddenSize * batchSize * numDirections;
 | |
|                 if (direction) {
 | |
|                     pos = seqLength - 1 - start;
 | |
|                     step = -step;
 | |
|                 }
 | |
|                 int offset = hiddenSize * batchSize * pos * numDirections + direction * batchSize * hiddenSize;
 | |
| 
 | |
|                 // Compute HR = MatMul(R, O)
 | |
|                 {
 | |
|                     std::unique_ptr<RegionCommandT> rcmd(new RegionCommandT);
 | |
|                     rcmd->size = {N * hiddenSize, hiddenSize, batchSize};
 | |
|                     rcmd->indexes = {I_HR, I_R, oInit};
 | |
|                     rcmd->iterIndexes = {-1, -1, -1};
 | |
|                     rcmd->steps = {0, 0, step};
 | |
|                     rcmd->op.reset(new OpT);
 | |
|                     rcmd->op->type = OpType_MatMul;
 | |
|                     rcmd->op->main.type = OpParameter_MatMul;
 | |
|                     rcmd->op->main.value = new MatMulT;
 | |
|                     rcmd->op->main.AsMatMul()->transposeB = true;
 | |
|                     rcmd->op->main.AsMatMul()->transposeA = false;
 | |
|                     rcmd->view.resize(3);
 | |
|                     rcmd->view[0].reset(new ViewT);
 | |
|                     rcmd->view[0]->offset = 0;
 | |
|                     rcmd->view[0]->stride = {1, 0, N * hiddenSize};
 | |
|                     rcmd->view[1].reset(new ViewT);
 | |
|                     rcmd->view[1]->offset = direction * N * hiddenSize * hiddenSize;
 | |
|                     rcmd->view[1]->stride = {batchSize, 1, 0};
 | |
|                     rcmd->view[2].reset(new ViewT);
 | |
|                     if (oInit != I_Y) {
 | |
|                         rcmd->view[2]->offset = O->elementSize() * direction;
 | |
|                     } else {
 | |
|                         int pre = start - 1;
 | |
|                         if (direction) {
 | |
|                             pre = seqLength - 1 - pre;
 | |
|                         }
 | |
|                         rcmd->view[2]->offset = hiddenSize * batchSize * pre * numDirections + direction * batchSize * hiddenSize;
 | |
|                     }
 | |
|                     rcmd->view[2]->stride = {0, batchSize, 1};
 | |
|                     loop->commands.emplace_back(std::move(rcmd));
 | |
|                 }
 | |
| 
 | |
|                 if (type == OpType_RNN) {
 | |
|                     subEncoder(I_Y, UnaryOpOperation_TANH, BinaryOpOperation_ADD, start * batchSize * hiddenSize, 0, loop);
 | |
|                     loop->commands[loop->commands.size() - 1]->view[0]->offset = offset;
 | |
|                     loop->commands[loop->commands.size() - 1]->steps[0] = step;
 | |
|                     return;
 | |
|                 }
 | |
|                 // I = Sigmoid(WI * XI + BI + HRI)
 | |
|                 {
 | |
|                     subEncoder(I_I, UnaryOpOperation_SIGMOID, BinaryOpOperation_ADD, start * batchSize * 4 * hiddenSize, 0, loop);
 | |
|                 }
 | |
|                 // C = tanh(WC * XC + BC + HRC)
 | |
|                 {
 | |
|                     subEncoder(I_C, UnaryOpOperation_TANH, BinaryOpOperation_ADD, 3 * hiddenSize + start * batchSize * 4 * hiddenSize, 3 * hiddenSize, loop);
 | |
|                 }
 | |
|                 // F = Sigmoid(WF * XF + BF + HRF)
 | |
|                 {
 | |
|                     subEncoder(I_F, UnaryOpOperation_SIGMOID, BinaryOpOperation_ADD, 2 * hiddenSize + start * batchSize * 4 * hiddenSize, 2 * hiddenSize, loop);
 | |
|                 }
 | |
|                 // Cell = I * C + F * Cell
 | |
|                 {
 | |
|                     easyBinaryEncode(hiddenSize * batchSize, {I_Temp, I_I, I_C}, BinaryOpOperation_MUL, loop);
 | |
|                     auto cellOffset = cellInit == I_Cell ? 0 : Cell->elementSize() * direction;
 | |
|                     easyBinaryEncode(hiddenSize * batchSize, {I_I, I_F, cellInit}, BinaryOpOperation_MUL, loop, cellOffset);
 | |
|                     easyBinaryEncode(hiddenSize * batchSize, {I_Cell, I_Temp, I_I}, BinaryOpOperation_ADD, loop);
 | |
|                 }
 | |
|                 // C = Sigmoid(WO * XO + BO + HRO)
 | |
|                 {
 | |
|                     subEncoder(I_C, UnaryOpOperation_SIGMOID, BinaryOpOperation_ADD, 1 * hiddenSize + start * batchSize * 4 * hiddenSize, 1 * hiddenSize, loop);
 | |
|                 }
 | |
|                 // I = tanh(Cell), O = I * C
 | |
|                 {
 | |
|                     easyUnaryEncode({I_I, I_Cell}, UnaryOpOperation_TANH, loop, hiddenSize * batchSize);
 | |
|                     easyBinaryEncode(hiddenSize * batchSize, {I_Y, I_I, I_C}, BinaryOpOperation_MUL, loop, 0, step, offset);
 | |
|                 }
 | |
|             };
 | |
|             if (nullptr == O_Init && nullptr == Cell_Init) {
 | |
|                 std::unique_ptr<OpT> newop(new OpT);
 | |
|                 newop->type = OpType_While;
 | |
|                 newop->main.value = new LoopParamT;
 | |
|                 newop->main.type = OpParameter_LoopParam;
 | |
|                 auto loop = newop->main.AsLoopParam();
 | |
|                 // Y, Cell, O, Gate, I, C, F
 | |
|                 loop->tensorNumber = 7;
 | |
|                 loop->inputIndexes = {3};
 | |
|                 loop->outputIndexes = {0, 1, 2, 4, 5, 6};
 | |
|                 loop->loopNumber = 1;
 | |
|                 auto unaryGateEncode = [&](UnaryOpOperation unOp, int dstIndex, int index, LoopParamT* loop) {
 | |
|                     std::unique_ptr<RegionCommandT> rcmd(new RegionCommandT);
 | |
|                     rcmd->size = {1, batchSize, hiddenSize};
 | |
|                     rcmd->indexes = {dstIndex, I_Gate};
 | |
|                     rcmd->iterIndexes = {-1, -1};
 | |
|                     rcmd->steps = {0, 0};
 | |
|                     rcmd->view.resize(2);
 | |
|                     rcmd->view[1].reset(new ViewT);
 | |
|                     rcmd->view[1]->offset = index * hiddenSize;
 | |
|                     rcmd->view[1]->stride = {N * hiddenSize * seqLength * batchSize, N * hiddenSize, 1};
 | |
|                     rcmd->view[0].reset(new ViewT);
 | |
|                     rcmd->view[0]->offset = 0;
 | |
|                     rcmd->view[0]->stride = {hiddenSize * batchSize, hiddenSize, 1};
 | |
|                     rcmd->op.reset(new OpT);
 | |
|                     rcmd->op->type = OpType_UnaryOp;
 | |
|                     rcmd->op->main.type = OpParameter_UnaryOp;
 | |
|                     rcmd->op->main.value = new UnaryOpT;
 | |
|                     rcmd->op->main.AsUnaryOp()->opType = unOp;
 | |
|                     loop->commands.emplace_back(std::move(rcmd));
 | |
|                 };
 | |
|                 if (type == OpType_RNN) {
 | |
|                     unaryGateEncode(UnaryOpOperation_TANH, I_Y, 0, loop);
 | |
|                     loop->commands[loop->commands.size() - 1]->view[0]->offset = direction * (batchSize * hiddenSize) * (1 + (seqLength - 1) * numDirections);
 | |
|                 } else {
 | |
|                     // I = Sigmoid(WI * XI + BI)
 | |
|                     unaryGateEncode(UnaryOpOperation_SIGMOID, I_I, 0, loop);
 | |
| 
 | |
|                     // C = tanh(WC * XC + BC)
 | |
|                     unaryGateEncode(UnaryOpOperation_TANH, I_C, 3, loop);
 | |
| 
 | |
|                     // Cell = I * C
 | |
|                     easyBinaryEncode(hiddenSize * batchSize, {I_Cell, I_I, I_C}, BinaryOpOperation_MUL, loop);
 | |
| 
 | |
|                     // C = Sigmoid(WO * XO + BO)
 | |
|                     unaryGateEncode(UnaryOpOperation_SIGMOID, I_C, 1, loop);
 | |
| 
 | |
|                     // I = tanh(Cell)
 | |
|                     easyUnaryEncode({I_I, I_Cell}, UnaryOpOperation_TANH, loop, hiddenSize * batchSize);
 | |
| 
 | |
|                     // O = I * C
 | |
|                     easyBinaryEncode(hiddenSize * batchSize, {I_Y, I_I, I_C}, BinaryOpOperation_MUL, loop, 0, 0, direction * ((batchSize * hiddenSize) + (seqLength - 1) * numDirections * batchSize * hiddenSize));
 | |
|                 }
 | |
|                 flatbuffers::FlatBufferBuilder builder;
 | |
|                 builder.Finish(Op::Pack(builder, newop.get()));
 | |
|                 auto cmd = GeometryComputerUtils::makeCommand(builder, {Gate.get()}, {Y, Cell.get(), O.get(), I.get(), C.get(), F.get()});
 | |
|                 res.command.emplace_back(std::move(cmd));
 | |
|             } else {
 | |
|                 // Has Init O and Cell
 | |
|                 std::unique_ptr<OpT> newop(new OpT);
 | |
|                 newop->type = OpType_While;
 | |
|                 newop->main.value = new LoopParamT;
 | |
|                 newop->main.type = OpParameter_LoopParam;
 | |
|                 auto loop = newop->main.AsLoopParam();
 | |
|                 // Y, Cell, O, Gate, I, C, F, O_Init, Cell_Init
 | |
|                 const int I_OInit = 10;
 | |
|                 const int I_CellInit = 11;
 | |
|                 std::vector<Tensor*> inputs;
 | |
|                 if (type == OpType_RNN) { // only provide initial_h
 | |
|                     loop->tensorNumber = 11;
 | |
|                     loop->inputIndexes = {3, 7, 10};
 | |
|                     inputs.assign({Gate.get(), R, O_Init});
 | |
|                 } else {
 | |
|                     loop->tensorNumber = 12;
 | |
|                     loop->inputIndexes = {3, 7, 10, 11};
 | |
|                     inputs.assign({Gate.get(), R, O_Init, Cell_Init});
 | |
|                 }
 | |
|                 loop->outputIndexes = {0, 4, 5, 6, 8, 9, 2, 1};
 | |
|                 loop->loopNumber = 1;
 | |
|                 std::vector<Tensor*> suboutputs = {
 | |
|                     Y, I.get(), C.get(), F.get(), HRTotal.get(), Temp.get(), O.get(), Cell.get()
 | |
|                 };
 | |
|                 sequenceEncode(0, I_OInit, I_CellInit, loop);
 | |
|                 flatbuffers::FlatBufferBuilder builder;
 | |
|                 builder.Finish(Op::Pack(builder, newop.get()));
 | |
|                 auto cmd = GeometryComputerUtils::makeCommand(builder, inputs, suboutputs);
 | |
|                 res.command.emplace_back(std::move(cmd));
 | |
|             }
 | |
|             // 1 - seqLength
 | |
|             {
 | |
|                 std::unique_ptr<OpT> newop(new OpT);
 | |
|                 newop->type = OpType_While;
 | |
|                 newop->main.value = new LoopParamT;
 | |
|                 newop->main.type = OpParameter_LoopParam;
 | |
|                 auto loop = newop->main.AsLoopParam();
 | |
|                 loop->parallel = false;
 | |
|                 // Y, Cell, O, Gate, I, C, F, R, Temp
 | |
|                 loop->tensorNumber = 10;
 | |
|                 loop->inputIndexes = {3, 7, 2, 1};
 | |
|                 loop->outputIndexes = {0, 4, 5, 6, 8, 9};
 | |
|                 loop->loopNumber = seqLength - 1;
 | |
|                 std::vector<Tensor*> inputs = {
 | |
|                     Gate.get(), R, O.get(), Cell.get()
 | |
|                 };
 | |
|                 std::vector<Tensor*> suboutputs = {
 | |
|                     Y, I.get(), C.get(), F.get(), HRTotal.get(), Temp.get()
 | |
|                 };
 | |
|                 sequenceEncode(1, I_Y, I_Cell, loop);
 | |
|                 flatbuffers::FlatBufferBuilder builder;
 | |
|                 builder.Finish(Op::Pack(builder, newop.get()));
 | |
|                 auto cmd = GeometryComputerUtils::makeCommand(builder, inputs, suboutputs);
 | |
|                 res.command.emplace_back(std::move(cmd));
 | |
|             }
 | |
|             if (outputs.size() >= 2) {
 | |
|                 int pos = seqLength - 1;
 | |
|                 if (direction) {
 | |
|                     pos = 0;
 | |
|                 }
 | |
|                 int offset = hiddenSize * batchSize * pos * numDirections + direction * batchSize * hiddenSize;
 | |
| 
 | |
|                 TensorUtils::getDescribe(outputs[1])->regions.emplace_back(GeometryComputerUtils::makeRawAddressRef(Y, offset, O->elementSize(), O->elementSize() * direction));
 | |
|             }
 | |
|             if (outputs.size() >= 3) {
 | |
|                 TensorUtils::getDescribe(outputs[2])->regions.emplace_back(GeometryComputerUtils::makeRawAddressRef(Cell.get(), 0, Cell->elementSize(), Cell->elementSize() * direction));
 | |
|             }
 | |
|         };
 | |
|         std::shared_ptr<Tensor> XWrap(Tensor::createDevice<float>({seqLength * batchSize, inputSize}, Tensor::CAFFE));
 | |
|         GeometryComputerUtils::makeRawAddressRef(XWrap.get(), X_Input, 0, seqLength * batchSize * inputSize);
 | |
|         res.extras.emplace_back(XWrap);
 | |
|         encode(XWrap.get(), 0);
 | |
|         if (numDirections > 1) {
 | |
|             // Create Reverse X
 | |
|             std::shared_ptr<Tensor> XReverse(Tensor::createDevice<float>({seqLength * batchSize, inputSize}, Tensor::CAFFE));
 | |
|             res.extras.emplace_back(XReverse);
 | |
|             auto des = TensorUtils::getDescribe(XReverse.get());
 | |
|             des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|             des->regions.resize(1);
 | |
|             auto& reg = des->regions[0];
 | |
|             reg.size[0] = 1;
 | |
|             reg.size[1] = seqLength;
 | |
|             reg.size[2] = batchSize * inputSize;
 | |
|             reg.src.offset = batchSize * inputSize * (seqLength-1);
 | |
|             reg.src.stride[0] = 0;
 | |
|             reg.src.stride[1] = -(batchSize * inputSize);
 | |
|             reg.src.stride[2] = 1;
 | |
|             reg.dst.offset = 0;
 | |
|             reg.dst.stride[0] = 0;
 | |
|             reg.dst.stride[1] = batchSize * inputSize;
 | |
|             reg.dst.stride[2] = 1;
 | |
|             reg.origin = X_Input;
 | |
|             // Encode XReverse
 | |
|             encode(XReverse.get(), 1);
 | |
|         }
 | |
|     }
 | |
|     virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                            Context& context, CommandBuffer& res) const override {
 | |
|         if (2 < inputs.size()) {
 | |
|             // Onnx 's LSTM, use origin way
 | |
|             _ComputeLSTMOnnx(inputs, outputs, context, res, op->main_as_LSTM(), op->type());
 | |
|             return true;
 | |
|         }
 | |
|         if (op->type() == OpType_RNN) {
 | |
|             MNN_ERROR("Navie RNN only support onnx model\n");
 | |
|             return false;
 | |
|         }
 | |
|         // For Old version's Caffe LSTM compute
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
|         MNN_ASSERT(1 == inputs.size());
 | |
|         auto& input  = inputs[0];
 | |
|         auto& output = outputs[0];
 | |
|         MNN_ASSERT(TensorUtils::getDescribe(input)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4);
 | |
|         const int batch       = input->buffer().dim[0].extent; // batchSize
 | |
|         const int timeSteps   = input->buffer().dim[1].extent;
 | |
|         const int numFeatures = input->buffer().dim[3].extent;  // inputSize
 | |
|         const int numUnits    = output->buffer().dim[3].extent; // hiddenSize
 | |
|         int batchSize         = batch;
 | |
|         int seqLength         = timeSteps;
 | |
|         int inputSize         = numFeatures;
 | |
|         int hiddenSize        = numUnits;
 | |
|         auto& tensors         = context.searchConst(op);
 | |
|         Tensor* W             = nullptr;
 | |
|         Tensor* R             = nullptr;
 | |
|         Tensor* B             = nullptr;
 | |
| 
 | |
|         if (!tensors.empty()) {
 | |
|             MNN_ASSERT(3 == tensors.size());
 | |
|             W = tensors[0].get();
 | |
|             R = tensors[1].get();
 | |
|             B = tensors[2].get();
 | |
|         } else {
 | |
|             auto WW   = context.allocConst(op, {1, 4 * hiddenSize, inputSize}, halide_type_of<float>(), Tensor::CAFFE);
 | |
|             auto RW   = context.allocConst(op, {1, 4 * hiddenSize, hiddenSize}, halide_type_of<float>(), Tensor::CAFFE);
 | |
|             auto bias = context.allocConst(op, {4 * numUnits}, halide_type_of<float>(), Tensor::CAFFE);
 | |
|             if (nullptr == bias || nullptr == WW || nullptr == RW) {
 | |
|                 return false;
 | |
|             }
 | |
|             W          = WW.get();
 | |
|             R          = RW.get();
 | |
|             B          = bias.get();
 | |
|             auto mLSTM = op->main_as_LSTM();
 | |
|             // divide weight & bias if needed
 | |
|             auto weightI   = mLSTM->weightI();
 | |
|             auto weightH   = mLSTM->weightH();
 | |
|             int weightSize = weightI->dims()->data()[0];
 | |
|             // If devide, order is IFCO, else IFOC
 | |
|             auto devide = weightI && !weightH && weightSize == 4 * numUnits * (numFeatures + numUnits + 2);
 | |
|             {
 | |
|                 // Bias
 | |
|                 const float* biasPtr = nullptr;
 | |
|                 size_t biasLength    = 0;
 | |
|                 if (nullptr != mLSTM->bias() && nullptr != mLSTM->bias()->float32s()) {
 | |
|                     biasLength = mLSTM->bias()->float32s()->size();
 | |
|                     biasPtr    = mLSTM->bias()->float32s()->data();
 | |
|                 } else {
 | |
|                     biasLength = 4 * hiddenSize;
 | |
|                     biasPtr =
 | |
|                         mLSTM->weightI()->float32s()->data() + 4 * numUnits * numFeatures + 4 * numUnits * numUnits;
 | |
|                 }
 | |
|                 if (4 * hiddenSize == biasLength) {
 | |
|                     ::memcpy(bias->host<float>(), biasPtr, 4 * hiddenSize * sizeof(float));
 | |
|                 } else {
 | |
|                     MNN_ASSERT(8 * hiddenSize == biasLength);
 | |
|                     auto dst = bias->host<float>();
 | |
|                     auto src = biasPtr;
 | |
|                     for (int i = 0; i < 4 * hiddenSize; ++i) {
 | |
|                         dst[i] = src[i] + src[i + 4 * hiddenSize];
 | |
|                     }
 | |
|                 }
 | |
|                 auto destBias = bias->host<float>();
 | |
|                 if (devide) {
 | |
|                     // IFCO -> IOFC
 | |
|                     auto bf = destBias + 1 * hiddenSize;
 | |
|                     auto bc = destBias + 2 * hiddenSize;
 | |
|                     auto bo = destBias + 3 * hiddenSize;
 | |
|                     for (int i = 0; i < hiddenSize; ++i) {
 | |
|                         auto temp = bc[i];
 | |
|                         bc[i]     = bf[i];
 | |
|                         bf[i]     = bo[i];
 | |
|                         bo[i]     = temp;
 | |
|                     }
 | |
|                 } else {
 | |
|                     // IFOC -> IOFC
 | |
|                     auto bf = destBias + 1 * hiddenSize;
 | |
|                     auto bo = destBias + 2 * hiddenSize;
 | |
|                     for (int i = 0; i < hiddenSize; ++i) {
 | |
|                         auto temp = bo[i];
 | |
|                         bo[i]     = bf[i];
 | |
|                         bf[i]     = temp;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // gate space
 | |
|             // cell space
 | |
|             if (mLSTM->weightH()) {
 | |
|                 MNN_ASSERT(mLSTM->weightH()->float32s()->size() == numUnits * numUnits * 4);
 | |
|             }
 | |
|             // W: IFOC -> IOFC
 | |
|             {
 | |
|                 auto srcWPtr = mLSTM->weightI()->float32s()->data();
 | |
|                 auto dI      = W->host<float>() + 0 * hiddenSize * inputSize;
 | |
|                 auto dC      = W->host<float>() + 3 * hiddenSize * inputSize;
 | |
|                 auto dF      = W->host<float>() + 2 * hiddenSize * inputSize;
 | |
|                 auto dO      = W->host<float>() + 1 * hiddenSize * inputSize;
 | |
| 
 | |
|                 auto sI = srcWPtr + 0 * hiddenSize * inputSize;
 | |
|                 auto sF = srcWPtr + 1 * hiddenSize * inputSize;
 | |
|                 auto sO = srcWPtr + 3 * hiddenSize * inputSize;
 | |
|                 auto sC = srcWPtr + 2 * hiddenSize * inputSize;
 | |
|                 if (!devide) {
 | |
|                     sI = srcWPtr + 0 * hiddenSize * inputSize;
 | |
|                     sF = srcWPtr + 1 * hiddenSize * inputSize;
 | |
|                     sO = srcWPtr + 2 * hiddenSize * inputSize;
 | |
|                     sC = srcWPtr + 3 * hiddenSize * inputSize;
 | |
|                 }
 | |
| 
 | |
|                 ::memcpy(dI, sI, hiddenSize * inputSize * sizeof(float));
 | |
|                 ::memcpy(dF, sF, hiddenSize * inputSize * sizeof(float));
 | |
|                 ::memcpy(dC, sC, hiddenSize * inputSize * sizeof(float));
 | |
|                 ::memcpy(dO, sO, hiddenSize * inputSize * sizeof(float));
 | |
|             }
 | |
|             // R: IFOC -> IOFC
 | |
|             {
 | |
|                 auto srcHPtr = mLSTM->weightI()->float32s()->data() + 4 * numUnits * numFeatures;
 | |
|                 if (!devide) {
 | |
|                     srcHPtr = mLSTM->weightH()->float32s()->data();
 | |
|                 }
 | |
|                 auto dI = R->host<float>() + 0 * hiddenSize * hiddenSize;
 | |
|                 auto dC = R->host<float>() + 3 * hiddenSize * hiddenSize;
 | |
|                 auto dF = R->host<float>() + 2 * hiddenSize * hiddenSize;
 | |
|                 auto dO = R->host<float>() + 1 * hiddenSize * hiddenSize;
 | |
| 
 | |
|                 auto sI = srcHPtr + 0 * hiddenSize * hiddenSize;
 | |
|                 auto sC = srcHPtr + 2 * hiddenSize * hiddenSize;
 | |
|                 auto sF = srcHPtr + 1 * hiddenSize * hiddenSize;
 | |
|                 auto sO = srcHPtr + 3 * hiddenSize * hiddenSize;
 | |
|                 if (!devide) {
 | |
|                     sI = srcHPtr + 0 * hiddenSize * hiddenSize;
 | |
|                     sC = srcHPtr + 3 * hiddenSize * hiddenSize;
 | |
|                     sF = srcHPtr + 1 * hiddenSize * hiddenSize;
 | |
|                     sO = srcHPtr + 2 * hiddenSize * hiddenSize;
 | |
|                 }
 | |
|                 ::memcpy(dI, sI, hiddenSize * hiddenSize * sizeof(float));
 | |
|                 ::memcpy(dF, sF, hiddenSize * hiddenSize * sizeof(float));
 | |
|                 ::memcpy(dC, sC, hiddenSize * hiddenSize * sizeof(float));
 | |
|                 ::memcpy(dO, sO, hiddenSize * hiddenSize * sizeof(float));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         std::shared_ptr<Tensor> tempInput(Tensor::createDevice<float>({seqLength, batchSize, inputSize}, Tensor::CAFFE));
 | |
|         {
 | |
|             // Transpose for input
 | |
|             auto des        = TensorUtils::getDescribe(tempInput.get());
 | |
|             des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|             des->regions.resize(1);
 | |
|             auto& reg         = des->regions[0];
 | |
|             reg.size[0]       = seqLength;
 | |
|             reg.size[1]       = batchSize;
 | |
|             reg.size[2]       = inputSize;
 | |
|             reg.dst.offset    = 0;
 | |
|             reg.dst.stride[0] = batchSize * inputSize;
 | |
|             reg.dst.stride[1] = inputSize;
 | |
|             reg.dst.stride[2] = 1;
 | |
|             reg.src.offset    = 0;
 | |
|             reg.src.stride[0] = inputSize;
 | |
|             reg.src.stride[1] = inputSize * seqLength;
 | |
|             reg.src.stride[2] = 1;
 | |
|             reg.origin        = inputs[0];
 | |
|         }
 | |
|         std::shared_ptr<Tensor> tempOutput(Tensor::createDevice<float>({seqLength, 1, batchSize, hiddenSize}, Tensor::CAFFE));
 | |
|         _ComputeLSTMOnnx({tempInput.get(), W, R, B}, {tempOutput.get()}, context, res, op->main_as_LSTM(), op->type());
 | |
|         res.extras.emplace_back(tempInput);
 | |
|         res.extras.emplace_back(tempOutput);
 | |
|         {
 | |
|             // Transpose for output
 | |
|             auto des = TensorUtils::getDescribe(output);
 | |
|             des->regions.resize(1);
 | |
|             des->memoryType   = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|             auto& reg         = des->regions[0];
 | |
|             reg.origin        = tempOutput.get();
 | |
|             reg.size[0]       = seqLength;
 | |
|             reg.size[1]       = batchSize;
 | |
|             reg.size[2]       = hiddenSize;
 | |
|             reg.dst.offset    = 0;
 | |
|             reg.src.stride[0] = batchSize * hiddenSize;
 | |
|             reg.src.stride[1] = hiddenSize;
 | |
|             reg.src.stride[2] = 1;
 | |
|             reg.dst.offset    = 0;
 | |
|             reg.dst.stride[0] = hiddenSize;
 | |
|             reg.dst.stride[1] = hiddenSize * seqLength;
 | |
|             reg.dst.stride[2] = 1;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // LSTMBlockCell
 | |
| class GeometryLSTMBlockCell : public GeometryComputer {
 | |
| public:
 | |
|     virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                            Context& context, CommandBuffer& res) const override {
 | |
|         /*
 | |
|          shapes:
 | |
|          x: [batchSize, inputSize]
 | |
|          cs_prev, i, cs, f, o, ci, co, h: [batchSize, hiddenSize]
 | |
|          wci, wcf, wco: [hiddenSize]
 | |
|          w: [inputSize + hiddenSize, 4 * hiddenSize]
 | |
|          b: [4 * hiddenSize]
 | |
|          */
 | |
|         // inputs
 | |
|         auto x       = inputs[0];
 | |
|         auto cs_prev = inputs[1];
 | |
|         auto h_prev  = inputs[2];
 | |
|         auto w       = inputs[3];
 | |
|         auto wci     = inputs[4];
 | |
|         auto wcf     = inputs[5];
 | |
|         auto wco     = inputs[6];
 | |
|         auto b       = inputs[7];
 | |
|         // outputs
 | |
|         auto i       = outputs[0];
 | |
|         auto cs      = outputs[1];
 | |
|         auto f       = outputs[2];
 | |
|         auto o       = outputs[3];
 | |
|         auto ci      = outputs[4];
 | |
|         auto co      = outputs[5];
 | |
|         auto h       = outputs[6];
 | |
|         int batchSize  = x->length(0);
 | |
|         int inputSize  = x->length(1);
 | |
|         int hiddenSize = h_prev->length(1);
 | |
|         // params
 | |
|         auto param = op->main_as_LSTMBlockCell();
 | |
|         float cell_clip = param->cell_clip();
 | |
|         float forget_bias = param->forget_bias();
 | |
|         bool use_peephole = param->use_peephole();
 | |
|         // xh = [x, h_prev]
 | |
|         std::shared_ptr<Tensor> xh(Tensor::createDevice<float>({batchSize, inputSize + hiddenSize}));
 | |
|         {
 | |
|             auto xhDes        = TensorUtils::getDescribe(xh.get());
 | |
|             xhDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|             xhDes->regions.resize(2);
 | |
|             xhDes->regions[0].origin = x;
 | |
|             xhDes->regions[0].size[0] = batchSize;
 | |
|             xhDes->regions[0].size[1] = inputSize;
 | |
|             xhDes->regions[0].src.stride[0] = inputSize;
 | |
|             xhDes->regions[0].dst.stride[0] = inputSize + hiddenSize;
 | |
|             xhDes->regions[1].origin = h_prev;
 | |
|             xhDes->regions[1].size[0] = batchSize;
 | |
|             xhDes->regions[1].size[1] = hiddenSize;
 | |
|             xhDes->regions[1].dst.offset = inputSize;
 | |
|             xhDes->regions[1].src.stride[0] = hiddenSize;
 | |
|             xhDes->regions[1].dst.stride[0] = inputSize + hiddenSize;
 | |
|             res.extras.emplace_back(xh);
 | |
|         }
 | |
|         // icfo = xh * w + b
 | |
|         std::shared_ptr<Tensor> icfo(Tensor::createDevice<float>({batchSize, 4 * hiddenSize}));
 | |
|         {
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeMatMul(xh.get(), w, icfo.get(), b, false, false));
 | |
|             res.extras.emplace_back(icfo);
 | |
|         }
 | |
|         // [i, ci, f, o] = icfo
 | |
|         std::shared_ptr<Tensor> iTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|         std::shared_ptr<Tensor> fTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|         std::shared_ptr<Tensor> ciTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|         std::shared_ptr<Tensor> oTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|         {
 | |
|             // using ICFO order
 | |
|             // ref: https://github.com/tensorflow/tensorflow/blob/dec8e0b11f4f87693b67e125e67dfbc68d26c205/tensorflow/core/kernels/rnn/lstm_ops.h
 | |
|             std::vector<std::shared_ptr<Tensor>> ifcioArray = { iTensor, ciTensor, fTensor, oTensor };
 | |
|             // std::vector<std::shared_ptr<Tensor>> ifcioArray = { iTensor, fTensor, ciTensor, oTensor };
 | |
|             for (int n = 0; n < 4; n++) {
 | |
|                 auto des        = TensorUtils::getDescribe(ifcioArray[n].get());
 | |
|                 des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|                 des->regions.resize(1);
 | |
|                 des->regions[0].origin = icfo.get();
 | |
|                 des->regions[0].size[0] = batchSize;
 | |
|                 des->regions[0].size[1] = hiddenSize;
 | |
|                 des->regions[0].src.offset = n * hiddenSize;
 | |
|                 des->regions[0].src.stride[0] = 4 * hiddenSize;
 | |
|                 des->regions[0].dst.stride[0] = hiddenSize;
 | |
|             }
 | |
|             res.extras.insert(res.extras.end(), { iTensor, fTensor, ciTensor, oTensor });
 | |
|         }
 | |
|         // f = f + forget_bias
 | |
|         std::shared_ptr<Tensor> ffTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|         {
 | |
|             auto constTensor = context.allocConst(op, {}, halide_type_of<float>());
 | |
|             constTensor->host<float>()[0] = forget_bias;
 | |
|             res.extras.emplace_back(ffTensor);
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, fTensor.get(), constTensor.get(), ffTensor.get()));
 | |
|         }
 | |
|         // if not use_peephole:
 | |
|         //      wci = wcf = wco = 0
 | |
|         if (!use_peephole) {
 | |
|             auto zeroTensor = context.allocConst(op, {}, halide_type_of<float>());
 | |
|             zeroTensor->host<float>()[0] = 0;
 | |
|             wci = zeroTensor.get();
 | |
|             wcf = wci;
 | |
|             wco = wci;
 | |
|         }
 | |
|         if (use_peephole) {
 | |
|             // i = sigmoid(cs_prev * wci + i)
 | |
|             // f = sigmoid(cs_prev * wcf + f)
 | |
|             // ci = tanh(ci)
 | |
|             std::shared_ptr<Tensor> cs_prev_wci(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             std::shared_ptr<Tensor> cs_prev_wcf(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             std::shared_ptr<Tensor> cs_prev_wci_i(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             std::shared_ptr<Tensor> cs_prev_wcf_f(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, cs_prev, wci, cs_prev_wci.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, cs_prev, wcf, cs_prev_wcf.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, cs_prev_wci.get(), iTensor.get(), cs_prev_wci_i.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, cs_prev_wcf.get(), ffTensor.get(), cs_prev_wcf_f.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, cs_prev_wci_i.get(), i));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, cs_prev_wcf_f.get(), f));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, ciTensor.get(), ci));
 | |
|             res.extras.insert(res.extras.end(), { cs_prev_wci, cs_prev_wcf, cs_prev_wci_i, cs_prev_wcf_f });
 | |
|         } else {
 | |
|             // i = sigmoid(i)
 | |
|             // f = sigmoid(f)
 | |
|             // ci = tanh(ci)
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, iTensor.get(), i));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, ffTensor.get(), f));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, ciTensor.get(), ci));
 | |
|         }
 | |
| 
 | |
|         Tensor* csTmp = cs;
 | |
|         if (cell_clip > 0) {
 | |
|             std::shared_ptr<Tensor> csTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             csTmp = csTensor.get();
 | |
|             res.extras.emplace_back(csTensor);
 | |
|         }
 | |
|         // cs = ci .* i + cs_prev .* f
 | |
|         std::shared_ptr<Tensor> ci_i(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|         std::shared_ptr<Tensor> cs_prev_f(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|         {
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, ci, i, ci_i.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, cs_prev, f, cs_prev_f.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, ci_i.get(), cs_prev_f.get(), csTmp));
 | |
|             res.extras.insert(res.extras.end(), { ci_i, cs_prev_f });
 | |
|         }
 | |
|         if (cell_clip > 0) {
 | |
|             // cs = clip(cs, cell_clip)
 | |
|             std::shared_ptr<Tensor> upValue(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             std::shared_ptr<Tensor> downValue(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             std::shared_ptr<Tensor> midTensor(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             auto posConst = context.allocConst(op, {}, halide_type_of<float>());
 | |
|             posConst->host<float>()[0] = std::fabs(cell_clip);
 | |
|             auto negConst = context.allocConst(op, {}, halide_type_of<float>());
 | |
|             negConst->host<float>()[0] = -std::fabs(cell_clip);
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_GREATER, csTmp, posConst.get(), upValue.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_LESS, csTmp, negConst.get(), downValue.get()));
 | |
|             flatbuffers::FlatBufferBuilder builder;
 | |
|             OpBuilder opBuilder(builder);
 | |
|             opBuilder.add_type(OpType_Select);
 | |
|             builder.Finish(opBuilder.Finish());
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeCommand(builder, {upValue.get(), posConst.get(), csTmp}, {midTensor.get()}));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeCommand(builder, {downValue.get(), negConst.get(), midTensor.get()}, {cs}));
 | |
|             res.extras.insert(res.extras.end(), { upValue, downValue, midTensor });
 | |
|         }
 | |
|         if (use_peephole) {
 | |
|             // o = sigmoid(cs * wco + o)
 | |
|             std::shared_ptr<Tensor> cs_wco(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             std::shared_ptr<Tensor> cs_wco_o(Tensor::createDevice<float>({batchSize, hiddenSize}));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, cs, wco, cs_wco.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_ADD, cs_wco.get(), oTensor.get(), cs_wco_o.get()));
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, cs_wco_o.get(), o));
 | |
|             res.extras.insert(res.extras.end(), { cs_wco, cs_wco_o });
 | |
|         } else {
 | |
|             // o = sigmoid(o)
 | |
|             res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_SIGMOID, oTensor.get(), o));
 | |
|         }
 | |
|         // co = tanh(cs)
 | |
|         // h = co .* o
 | |
|         res.command.emplace_back(GeometryComputerUtils::makeUnary(UnaryOpOperation_TANH, cs, co));
 | |
|         res.command.emplace_back(GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, co, o, h));
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| static void _create() {
 | |
|     std::shared_ptr<GeometryComputer> comp(new GeometryLSTM);
 | |
|     GeometryComputer::registerGeometryComputer(comp, {OpType_LSTM, OpType_RNN}, Runtime::Compiler_Loop);
 | |
|     std::shared_ptr<GeometryComputer> comp1(new GeometryLSTMBlockCell);
 | |
|     GeometryComputer::registerGeometryComputer(comp1, {OpType_LSTMBlockCell});
 | |
| }
 | |
| 
 | |
| REGISTER_GEOMETRY(GeometryLSTM, _create);
 | |
| } // namespace MNN
 |