mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			200 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  CPUUnary.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2018/08/02.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "backend/cpu/CPUUnary.hpp"
 | 
						|
#include "UnaryUtils.hpp"
 | 
						|
#include "backend/cpu/CPUBackend.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/Concurrency.h"
 | 
						|
#include "compute/ConvOpt.h"
 | 
						|
#include "compute/CommonOptFunction.h"
 | 
						|
#include <MNN/AutoTime.hpp>
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
CPUUnary::CPUUnary(Backend *b, MNNUnaryExecute proc) : MNN::Execution(b), mProc(proc) {
 | 
						|
    // nothing to do
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode CPUUnary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
    MNN_ASSERT(1 == outputs.size());
 | 
						|
    MNN_ASSERT(inputs[0]->getType() == halide_type_of<float>() || inputs[0]->getType() == halide_type_of<int32_t>());
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
static void _Neg(void* out, const void* inp, int realSize) {
 | 
						|
    MNNScaleAndAddBiasScalar((float*)out, (const float*)inp, 0.0f, -1.0f, realSize);
 | 
						|
}
 | 
						|
 | 
						|
static void _ABS(void* out, const void* inp, int realSize) {
 | 
						|
    MNNReluWithSlopeCommon((float*)out, (const float*)inp, realSize, -1.0f);
 | 
						|
}
 | 
						|
static void _Square(void* out, const void* inp, int realSize) {
 | 
						|
    MNNMatrixProdCommon((float*)out, (const float*)inp, (const float*)inp, realSize, 0, 0, 0, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void _EXP(void* outRaw, const void* inpRaw, int realSize) {
 | 
						|
    auto out = (float*)outRaw;
 | 
						|
    auto inp = (const float*)inpRaw;
 | 
						|
    MNNScaleAndAddBiasScalar(out, inp, 0.0f, -1.0f, realSize);
 | 
						|
    MNNExp(out, out, realSize);
 | 
						|
}
 | 
						|
static void _EXPM1(void* outRaw, const void* inpRaw, int realSize) {
 | 
						|
    auto out = (float*)outRaw;
 | 
						|
    auto inp = (const float*)inpRaw;
 | 
						|
    MNNScaleAndAddBiasScalar(out, inp, 0.0f, -1.0f, realSize);
 | 
						|
    MNNExp(out, out, realSize);
 | 
						|
    for (int i=0; i<realSize; ++i) {
 | 
						|
        out[i] = out[i] - 1.0f;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
MNNUnaryExecute CPUUnary::selectForFloat(int type, int precision) {
 | 
						|
    switch (type) {
 | 
						|
        case UnaryOpOperation_ABS:
 | 
						|
            return _ABS;
 | 
						|
        case UnaryOpOperation_SQUARE:
 | 
						|
            return _Square;
 | 
						|
        case UnaryOpOperation_NEG:
 | 
						|
            return _Neg;
 | 
						|
        case UnaryOpOperation_RSQRT:
 | 
						|
            return _unaryOp<UnaryRsqrt<float>, float>;
 | 
						|
        case UnaryOpOperation_EXP:
 | 
						|
            return _EXP;
 | 
						|
        case UnaryOpOperation_COS:
 | 
						|
            return _unaryOp<UnaryCos<float>, float>;
 | 
						|
        case UnaryOpOperation_SIN:
 | 
						|
            return (MNNUnaryExecute)MNNSin;
 | 
						|
        case UnaryOpOperation_SIGMOID:
 | 
						|
            if (BackendConfig::Precision_Low == precision) {
 | 
						|
                return (MNNUnaryExecute)MNNSigmoidLowp;
 | 
						|
            } else {
 | 
						|
                return (MNNUnaryExecute)MNNSigmoid;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case UnaryOpOperation_TANH:
 | 
						|
            return (MNNUnaryExecute)MNNTanh;
 | 
						|
        case UnaryOpOperation_TAN:
 | 
						|
            return _unaryOp<UnaryTan<float>, float>;
 | 
						|
        case UnaryOpOperation_ATAN:
 | 
						|
            return _unaryOp<UnaryATan<float>, float>;
 | 
						|
        case UnaryOpOperation_SQRT:
 | 
						|
            return _unaryOp<UnarySqrt<float>, float>;
 | 
						|
        case UnaryOpOperation_CEIL:
 | 
						|
            return _unaryOp<UnaryCeil<float>, float>;
 | 
						|
        case UnaryOpOperation_RECIPROCAL:
 | 
						|
            return _unaryOp<UnaryRecipocal<float>, float>;
 | 
						|
        case UnaryOpOperation_LOG1P:
 | 
						|
            return _unaryOp<UnaryLog1p<float>, float>;
 | 
						|
        case UnaryOpOperation_LOG:
 | 
						|
            return _unaryOp<UnaryLog<float>, float>;
 | 
						|
        case UnaryOpOperation_FLOOR:
 | 
						|
            return _unaryOp<UnaryFloor<float>, float>;
 | 
						|
        case UnaryOpOperation_BNLL:
 | 
						|
            return _unaryOp<UnaryBNLL<float>, float>;
 | 
						|
        case UnaryOpOperation_ACOSH:
 | 
						|
            return _unaryOp<UnaryAcosh<float>, float>;
 | 
						|
        case UnaryOpOperation_SINH:
 | 
						|
            return _unaryOp<UnarySinh<float>, float>;
 | 
						|
        case UnaryOpOperation_ASINH:
 | 
						|
            return _unaryOp<UnaryAsinh<float>, float>;
 | 
						|
        case UnaryOpOperation_ATANH:
 | 
						|
            return _unaryOp<UnaryAtanh<float>, float>;
 | 
						|
        case UnaryOpOperation_SIGN:
 | 
						|
            return _unaryOp<UnarySign<float>, float>;
 | 
						|
        case UnaryOpOperation_ROUND:
 | 
						|
            return _unaryOp<UnaryRound<float>, float>;
 | 
						|
        case UnaryOpOperation_COSH:
 | 
						|
            return _unaryOp<UnaryCosh<float>, float>;
 | 
						|
        case UnaryOpOperation_ERF:
 | 
						|
            return _unaryOp<UnaryErf<float>, float>;
 | 
						|
        case UnaryOpOperation_ERFC:
 | 
						|
            return _unaryOp<UnaryErfc<float>, float>;
 | 
						|
        case UnaryOpOperation_ERFINV:
 | 
						|
            return _unaryOp<UnaryErfinv<float>, float>;
 | 
						|
        case UnaryOpOperation_EXPM1:
 | 
						|
            return _EXPM1;
 | 
						|
        case UnaryOpOperation_ASIN:
 | 
						|
            return _unaryOp<UnaryAsin<float>, float>;
 | 
						|
        case UnaryOpOperation_ACOS:
 | 
						|
            return _unaryOp<UnaryAcos<float>, float>;
 | 
						|
        case UnaryOpOperation_HARDSWISH:
 | 
						|
            return (MNNUnaryExecute)MNNHardSwishCommon;
 | 
						|
        case UnaryOpOperation_GELU:
 | 
						|
            return (MNNUnaryExecute)MNNGeluCommon;
 | 
						|
        default:
 | 
						|
            MNN_ASSERT(false);
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static MNNUnaryExecute selectForInt(int type) {
 | 
						|
    switch (type) {
 | 
						|
        case UnaryOpOperation_ABS:
 | 
						|
            return _unaryOp<UnaryAbs<int32_t>, int32_t>;
 | 
						|
        case UnaryOpOperation_NEG:
 | 
						|
            return _unaryOp<UnaryNeg<int32_t>, int32_t>;
 | 
						|
        case UnaryOpOperation_SQUARE:
 | 
						|
            return _unaryOp<UnarySquare<int32_t>, int32_t>;
 | 
						|
        case UnaryOpOperation_SIGN:
 | 
						|
            return _unaryOp<UnarySign<int32_t>, int32_t>;
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
ErrorCode CPUUnary::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
    auto input  = inputs[0];
 | 
						|
    auto output = outputs[0];
 | 
						|
    auto size = static_cast<CPUBackend*>(backend())->getTensorSize(input);
 | 
						|
    auto schedule = ((CPUBackend*)backend())->multiThreadDivide(size);
 | 
						|
    auto inputPtr = input->host<uint8_t>();
 | 
						|
    auto outputPtr = output->host<uint8_t>();
 | 
						|
    int outBytes = output->getType().bytes();
 | 
						|
    if (halide_type_float == output->getType().code) {
 | 
						|
        outBytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
 | 
						|
    }
 | 
						|
    MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
 | 
						|
        int start = schedule.first * (int)tId;
 | 
						|
        int realSize = schedule.first;
 | 
						|
        if (tId == schedule.second -1 ) {
 | 
						|
            realSize = size - start;
 | 
						|
        }
 | 
						|
        if (realSize > 0) {
 | 
						|
            auto inp = inputPtr + start * outBytes;
 | 
						|
            auto out = outputPtr + start * outBytes;
 | 
						|
            mProc(out, inp, realSize);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    MNN_CONCURRENCY_END();
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
class CPUUnaryCreator : public CPUBackend::Creator {
 | 
						|
public:
 | 
						|
    virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | 
						|
                                const MNN::Op *op, Backend *backend) const override {
 | 
						|
        auto precision = static_cast<CPUBackend*>(backend)->precisionMode();
 | 
						|
        auto type = inputs[0]->getType();
 | 
						|
        MNNUnaryExecute proc = nullptr;
 | 
						|
        if (type.code == halide_type_int) {
 | 
						|
            proc = selectForInt(op->main_as_UnaryOp()->opType());
 | 
						|
        } else if (type.code == halide_type_float) {
 | 
						|
            proc = static_cast<CPUBackend*>(backend)->functions()->MNNSelectUnaryFunctionForFloat(op->main_as_UnaryOp()->opType(), static_cast<CPUBackend*>(backend)->precisionMode());
 | 
						|
        }
 | 
						|
        if (nullptr == proc) {
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
        return new CPUUnary(backend, proc);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_CPU_OP_CREATOR(CPUUnaryCreator, OpType_UnaryOp);
 | 
						|
 | 
						|
} // namespace MNN
 |