mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			939 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			939 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ConvBufExecution.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/02/28.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #ifndef MNN_OPENCL_BUFFER_CLOSED
 | |
| 
 | |
| #include "ConvBufExecution.hpp"
 | |
| #include "ConvBufWinograd.hpp"
 | |
| #include "core/ConvolutionCommon.hpp"
 | |
| #include "core/Backend.hpp"
 | |
| #include "RasterBufExecution.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| namespace OpenCL {
 | |
| 
 | |
| static float EstimateOccupancy(int blockWidth, int x, int y, int f, int b, int slm_div_factor, int maxThreadsPerDevice) {
 | |
| 
 | |
|     auto threads =  UP_DIV(x, blockWidth) * y * UP_DIV(f, 16) * slm_div_factor * b;
 | |
| 
 | |
|     return static_cast<float>(threads) / static_cast<float>(maxThreadsPerDevice);
 | |
| }
 | |
| 
 | |
| 
 | |
| static std::pair<int, int> GetTuningParams(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const uint32_t maxWorkGroupSize, const bool isSupportedFP16, const int maxThreadsPerDevice) {
 | |
| 
 | |
|     auto input  = inputs[0];
 | |
|     auto output = outputs[0];
 | |
|     std::vector<int> inputShape  = tensorShapeFormat(input);
 | |
|     std::vector<int> outputShape = tensorShapeFormat(output);
 | |
|     const int height             = outputShape.at(1);
 | |
|     const int width              = outputShape.at(2);
 | |
|     const int outChannel         = outputShape.at(3);
 | |
|     const int batch              = outputShape.at(0);
 | |
| 
 | |
|     const int inputHeight   = inputShape.at(1);
 | |
|     const int inputWidth    = inputShape.at(2);
 | |
|     const int inputChannels = inputShape.at(3);
 | |
| 
 | |
|     size_t ic_blocks = UP_DIV(inputChannels, 16);
 | |
| 
 | |
|     size_t max_slm_div_factor = maxWorkGroupSize / 16;
 | |
|     int blockWidth = 2;
 | |
|     int slm_div_factor = 1;
 | |
|     int xf = width * outChannel;
 | |
|     if (xf <= 256) {
 | |
|         if (width <= 8 || xf <= 128)
 | |
|             blockWidth = 2;
 | |
|         else
 | |
|             blockWidth = 4;
 | |
|     } else if (xf <= 1536) {
 | |
|         blockWidth = 4;
 | |
|     } else {
 | |
|         if (width >= 8 && width < 12 && xf < 2600)
 | |
|             blockWidth = 4;
 | |
|         else if (width < 12 && xf < 8192)
 | |
|             blockWidth = 8;
 | |
|         else
 | |
|             blockWidth =  8;
 | |
|     }
 | |
| 
 | |
|     bool slm_exception = width == 3 && height == 3 && !isSupportedFP16 && outChannel <= 512;
 | |
| 
 | |
|     if (!slm_exception)
 | |
|         while (ic_blocks % (slm_div_factor * 2) == 0 && (slm_div_factor * 2 <= max_slm_div_factor) &&
 | |
|                EstimateOccupancy(blockWidth, width, height, outChannel, batch, slm_div_factor, maxThreadsPerDevice) <
 | |
|                    4.0)
 | |
|             slm_div_factor *= 2;
 | |
| 
 | |
|     return {blockWidth, slm_div_factor};
 | |
| }
 | |
| 
 | |
| std::pair<std::vector<uint32_t>,  uint32_t> ConvBufCommonExecution::gws2dLwsTune(const cl::Kernel &kernel, const std::vector<uint32_t> &gws, const std::string &kernelName, const uint32_t maxWorkGroupSize) {
 | |
|     MNN_ASSERT(gws.size() == 2);
 | |
| 
 | |
|     auto runtime = mOpenCLBackend->getOpenCLRuntime();
 | |
|     auto maxWorkItemSizes = runtime->getMaxWorkItemSizes();
 | |
|     MNN_ASSERT(maxWorkItemSizes.size() >= 2);
 | |
|     
 | |
|     auto& tunedLws = runtime->tunedLwsMap();
 | |
|     std::pair<std::string, std::vector<uint32_t>> info = std::make_pair(kernelName, gws);
 | |
|     if (tunedLws.find(info) != tunedLws.end()) {
 | |
|         //printf("ConvBuf2dGeneralLocalWS Found! gws:%d %d lws:%d %d\n", gws[0], gws[1], tunedLws[info][0], tunedLws[info][1]);
 | |
|         return tunedLws[info];
 | |
|     }
 | |
|     
 | |
|     std::vector<uint32_t> lws(3, 1);
 | |
|     std::vector<uint32_t> lws_prefer(3, 1);
 | |
|     uint32_t min_cost = UINT_MAX;
 | |
|     
 | |
|     if(runtime->getCLTuneLevel() == Heavy) {
 | |
|         while(lws[1] <= gws[1] || lws[1] <= 6) {
 | |
|             lws[0] = 1;
 | |
|             while(lws[0] <= gws[0] || lws[0] <= 6) {
 | |
|                 if(lws[0] <= maxWorkItemSizes[0] && lws[1] <= maxWorkItemSizes[1] && lws[0]*lws[1] <= maxWorkGroupSize) {
 | |
|                     cl::Event event;
 | |
|                     std::vector<uint32_t> internalGlobalWS(2, 1);
 | |
|                     for (size_t i = 0; i < gws.size(); ++i) {
 | |
|                         internalGlobalWS[i] = ROUND_UP(gws[i], std::max((uint32_t)1, lws[i]));
 | |
|                     }
 | |
|                     cl_int res = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueNDRangeKernel(
 | |
|                                     kernel, cl::NullRange,
 | |
|                                     cl::NDRange(internalGlobalWS[0], internalGlobalWS[1]),
 | |
|                                     cl::NDRange(lws[0], lws[1]),
 | |
|                                     nullptr, &event);
 | |
|                     MNN_CHECK_CL_SUCCESS(res, kernelName.c_str());
 | |
| 
 | |
|                     int cost_time = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | |
|                     if(cost_time < min_cost) {
 | |
|                         min_cost = cost_time;
 | |
|                         lws_prefer[0] = lws[0];
 | |
|                         lws_prefer[1] = lws[1];
 | |
|                     }
 | |
|                 }
 | |
|                 lws[0]++;
 | |
|             }
 | |
|             lws[1]++;
 | |
|         }
 | |
|     } else if(runtime->getCLTuneLevel() == Wide) {
 | |
|         while(lws[1] <= gws[1] || lws[1] <= 6) {
 | |
|             lws[0] = 1;
 | |
|             while(lws[0] <= gws[0] || lws[0] <= 6) {
 | |
|                 if(lws[0] <= maxWorkItemSizes[0] && lws[1] <= maxWorkItemSizes[1] && lws[0]*lws[1] <= maxWorkGroupSize) {
 | |
|                     cl::Event event;
 | |
|                     std::vector<uint32_t> internalGlobalWS(2, 1);
 | |
|                     for (size_t i = 0; i < gws.size(); ++i) {
 | |
|                         internalGlobalWS[i] = ROUND_UP(gws[i], std::max((uint32_t)1, lws[i]));
 | |
|                     }
 | |
|                     cl_int res = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueNDRangeKernel(
 | |
|                                     kernel, cl::NullRange,
 | |
|                                     cl::NDRange(internalGlobalWS[0], internalGlobalWS[1]),
 | |
|                                     cl::NDRange(lws[0], lws[1]),
 | |
|                                     nullptr, &event);
 | |
|                     MNN_CHECK_CL_SUCCESS(res, kernelName.c_str());
 | |
| 
 | |
|                     int cost_time = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | |
|                     if(cost_time < min_cost) {
 | |
|                         min_cost = cost_time;
 | |
|                         lws_prefer[0] = lws[0];
 | |
|                         lws_prefer[1] = lws[1];
 | |
|                     }
 | |
|                 }
 | |
|                 do {
 | |
|                     lws[0]++;
 | |
|                 }
 | |
|                 while(((2*gws[0])%lws[0] > 1) && (lws[0] & (lws[0] - 1)) != 0 && (lws[0] <= gws[0]) && (lws[0] > 6));//divisible powOfTwo lessThanSix
 | |
|             }
 | |
|             do {
 | |
|                 lws[1]++;
 | |
|             }
 | |
|             while(((2*gws[1])%lws[1] > 1) && (lws[1] & (lws[1] - 1)) != 0 && (lws[1] <= gws[1]) && (lws[1] > 6));//divisible powOfTwo lessThanSix
 | |
|         }
 | |
|     } else if(runtime->getCLTuneLevel() == Normal) {
 | |
|         while(lws[1] <= gws[1] && lws[1] <= 6) {
 | |
|             lws[0] = 1;
 | |
|             while(lws[0] <= gws[0] || lws[0] <= 6) {
 | |
|                 if(lws[0] <= maxWorkItemSizes[0] && lws[1] <= maxWorkItemSizes[1] && lws[0]*lws[1] <= maxWorkGroupSize) {
 | |
|                     cl::Event event;
 | |
|                     std::vector<uint32_t> internalGlobalWS(2, 1);
 | |
|                     for (size_t i = 0; i < gws.size(); ++i) {
 | |
|                         internalGlobalWS[i] = ROUND_UP(gws[i], std::max((uint32_t)1, lws[i]));
 | |
|                     }
 | |
|                     cl_int res = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueNDRangeKernel(
 | |
|                                     kernel, cl::NullRange,
 | |
|                                     cl::NDRange(internalGlobalWS[0], internalGlobalWS[1]),
 | |
|                                     cl::NDRange(lws[0], lws[1]),
 | |
|                                     nullptr, &event);
 | |
|                     MNN_CHECK_CL_SUCCESS(res, kernelName.c_str());
 | |
| 
 | |
|                     int cost_time = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | |
|                     if(cost_time < min_cost) {
 | |
|                         min_cost = cost_time;
 | |
|                         lws_prefer[0] = lws[0];
 | |
|                         lws_prefer[1] = lws[1];
 | |
|                     }
 | |
|                 }
 | |
|                 do {
 | |
|                     lws[0]++;
 | |
|                 }
 | |
|                 while(((2*gws[0])%lws[0] > 1) && (lws[0] & (lws[0] - 1)) != 0 && (lws[0] <= gws[0]) && (lws[0] > 6));//divisible powOfTwo lessThanSix
 | |
|             }
 | |
|             do {
 | |
|                 lws[1]++;
 | |
|             }
 | |
|             while(((2*gws[1])%lws[1] > 1) && (lws[1] & (lws[1] - 1)) != 0 && (lws[1] <= gws[1]) && (lws[1] <= 6));//divisible powOfTwo lessThanSix
 | |
|         }
 | |
|     } else if(runtime->getCLTuneLevel() == Fast) {
 | |
|         while(lws[1] <= gws[1] && lws[1] <= 6) {
 | |
|             lws[0] = 1;
 | |
|             while(lws[0] <= gws[0] && lws[0] <= 6) {
 | |
|                 if(lws[0] <= maxWorkItemSizes[0] && lws[1] <= maxWorkItemSizes[1] && lws[0]*lws[1] <= maxWorkGroupSize) {
 | |
|                     cl::Event event;
 | |
|                     std::vector<uint32_t> internalGlobalWS(2, 1);
 | |
|                     for (size_t i = 0; i < gws.size(); ++i) {
 | |
|                         internalGlobalWS[i] = ROUND_UP(gws[i], std::max((uint32_t)1, lws[i]));
 | |
|                     }
 | |
|                     cl_int res = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueNDRangeKernel(
 | |
|                                     kernel, cl::NullRange,
 | |
|                                     cl::NDRange(internalGlobalWS[0], internalGlobalWS[1]),
 | |
|                                     cl::NDRange(lws[0], lws[1]),
 | |
|                                     nullptr, &event);
 | |
|                     MNN_CHECK_CL_SUCCESS(res, kernelName.c_str());
 | |
| 
 | |
|                     int cost_time = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | |
|                     if(cost_time < min_cost) {
 | |
|                         min_cost = cost_time;
 | |
|                         lws_prefer[0] = lws[0];
 | |
|                         lws_prefer[1] = lws[1];
 | |
|                     }
 | |
|                 }
 | |
|                 do {
 | |
|                     lws[0]++;
 | |
|                 }
 | |
|                 while(((2*gws[0])%lws[0] > 1) && (lws[0] & (lws[0] - 1)) != 0 && (lws[0] <= gws[0]) && (lws[0] <= 6));//divisible powOfTwo lessThanSix
 | |
|             }
 | |
|             do {
 | |
|                 lws[1]++;
 | |
|             }
 | |
|             while(((2*gws[1])%lws[1] > 1) && (lws[1] & (lws[1] - 1)) != 0 && (lws[1] <= gws[1]) && (lws[1] <= 6));//divisible powOfTwo lessThanSix
 | |
|         }
 | |
|     } else if(runtime->getCLTuneLevel() == None) {
 | |
|         // define not tune method to choose lws
 | |
|         if(runtime->getGpuMemType() == GpuMemObject::IMAGE) {
 | |
|             lws_prefer[0] = 8;
 | |
|             lws_prefer[1] = 4;
 | |
|         } else {
 | |
|             lws_prefer[0] = 0;
 | |
|             lws_prefer[1] = 0;
 | |
|         }
 | |
|         cl::Event event;
 | |
|         std::vector<uint32_t> internalGlobalWS(2, 1);
 | |
|         for (size_t i = 0; i < gws.size(); ++i) {
 | |
|             internalGlobalWS[i] = ROUND_UP(gws[i], std::max((uint32_t)1, lws_prefer[i]));
 | |
|         }
 | |
|         cl_int res = CL_SUCCESS;
 | |
|         if(lws_prefer[0] == 0 || lws_prefer[1] == 0){
 | |
|             res = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueNDRangeKernel(
 | |
|                     kernel, cl::NullRange, cl::NDRange(internalGlobalWS[0], internalGlobalWS[1]), cl::NullRange, nullptr, &event);
 | |
|         }else{
 | |
|             res = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueNDRangeKernel(
 | |
|                     kernel, cl::NullRange, cl::NDRange(internalGlobalWS[0], internalGlobalWS[1]), cl::NDRange(lws_prefer[0], lws_prefer[1]), nullptr, &event);
 | |
|         }
 | |
|         MNN_CHECK_CL_SUCCESS(res, kernelName.c_str());
 | |
|         min_cost = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | |
|     }
 | |
|     
 | |
|     if (tunedLws.find(info) == tunedLws.end()) {
 | |
|         //printf("ConvBuf2dGeneralLocalWS %d Insert! gws:%d %d, lws:%d %d, time:%dus\n", (int)tunedLws.size(), gws[0], gws[1], lws_prefer[0], lws_prefer[1], min_cost);
 | |
|         tunedLws.insert(std::make_pair(info, std::make_pair(lws_prefer, min_cost)));
 | |
|     }
 | |
|     return std::make_pair(lws_prefer, min_cost);
 | |
| }
 | |
| 
 | |
| ConvBufCommonExecution::ConvBufCommonExecution(const Convolution2D *conv2dParams, Backend *backend) : Execution(backend) {
 | |
|     auto openclBackend       = (OpenCLBackend *)backend;
 | |
|     int biasSize             = conv2dParams->common()->outputCount();
 | |
|     int buffer_size = ROUND_UP(biasSize, 16);//pack to 16
 | |
|     if(openclBackend->getOpenCLRuntime()->isSupportedFP16()) {
 | |
|         buffer_size *= sizeof(half_float::half);
 | |
|     } else {
 | |
|         buffer_size *= sizeof(float);
 | |
|     }
 | |
| 
 | |
|     mBias.reset(Tensor::createDevice<float>({1, 1, 1, ROUND_UP(biasSize, 16)}));
 | |
|     backend->onAcquireBuffer(mBias.get(), Backend::STATIC);
 | |
|     cl::Buffer &biasBuffer = openCLBuffer(mBias.get());
 | |
|     
 | |
|     cl_int res;
 | |
|     auto biasPtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
 | |
|         biasBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &res);
 | |
|     if(biasPtrCL != nullptr && res == CL_SUCCESS){
 | |
|         ::memset(biasPtrCL, 0, buffer_size);
 | |
|         if (nullptr != conv2dParams->bias()) {
 | |
|             const float *biasDataPtr = conv2dParams->bias()->data();
 | |
|             if(openclBackend->getOpenCLRuntime()->isSupportedFP16()){
 | |
|                 for(int i=0; i<biasSize; i++) {
 | |
|                     ((half_float::half*)biasPtrCL)[i] = (half_float::half)(biasDataPtr[i]);
 | |
|                 }
 | |
|             }else{
 | |
|                 ::memcpy(biasPtrCL, biasDataPtr, biasSize * sizeof(float));
 | |
|             }
 | |
|         }
 | |
|     }else{
 | |
|         MNN_ERROR("Map error biasPtrCL == nullptr \n");
 | |
|     }
 | |
|     openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(biasBuffer, biasPtrCL);
 | |
| }
 | |
| 
 | |
| ConvBufCommonExecution::~ConvBufCommonExecution() {
 | |
|     MNN_ASSERT(nullptr != mBias);
 | |
|     backend()->onReleaseBuffer(mBias.get(), Backend::STATIC);
 | |
| }
 | |
| 
 | |
| void ConvBufExecution::setConv1x1WeightBuffer(int packCout, int packCin, const float* filterDataPtr) {
 | |
|     cl_int res;
 | |
|     std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>({ROUND_UP(mOutputChannel, 8)/*Cout pack set to max 8*/, ROUND_UP(mInputChannel, packCin), mKernelWidth, mKernelHeight}));
 | |
|     
 | |
|     int buffer_size = filterBuffer->elementSize();
 | |
|     if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
 | |
|         buffer_size *= sizeof(half_float::half);
 | |
|     } else {
 | |
|         buffer_size *= sizeof(float);
 | |
|     }
 | |
|     mKernelBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size));
 | |
|     auto kernelBufferPtr = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*(mKernelBuffer.get()), true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &res);
 | |
|     if(kernelBufferPtr != nullptr && res == CL_SUCCESS){
 | |
|         ::memset(kernelBufferPtr, 0, buffer_size);
 | |
|         for(int o = 0; o < mOutputChannel; o++){
 | |
|             for(int i = 0 ; i < mInputChannel; i++){
 | |
|                 int bufferIdx = (o/packCout) * ROUND_UP(mInputChannel, packCin)*packCout + (i/packCin)*packCin*packCout + (o%packCout)*packCin + (i%packCin);//(Co/packCout, Ci/packCin, packCout, packCin)
 | |
|                 int filterIdx = o*mInputChannel + i;
 | |
|                 if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
 | |
|                     ((half_float::half*)kernelBufferPtr)[bufferIdx] = (half_float::half)(filterDataPtr[filterIdx]);
 | |
|                 }else{
 | |
|                     ((float*)kernelBufferPtr)[bufferIdx] = (float)(filterDataPtr[filterIdx]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }else{
 | |
|         MNN_ERROR("Map error ptrCL == nullptr \n");
 | |
|         MNN_ASSERT(false);
 | |
|     }
 | |
|     mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*(mKernelBuffer.get()), kernelBufferPtr);
 | |
| }
 | |
| 
 | |
| void ConvBufExecution::_generateFilterConvertRegion(Tensor* virtualFilter, Tensor* originBuffer) const {
 | |
|     auto filterDes = TensorUtils::getDescribe(virtualFilter);
 | |
|     filterDes->regions.clear();
 | |
|     for (int so=0; so<4; ++so) {
 | |
|         int oSize = (mOutputChannel - so + 3) / 4;
 | |
|         if (oSize <= 0) {
 | |
|             continue;
 | |
|         }
 | |
|         Tensor::InsideDescribe::Region slice;
 | |
|         slice.origin = originBuffer;
 | |
|         slice.size[0] = oSize;
 | |
|         slice.size[1] = mInputChannel;
 | |
|         slice.size[2] = mKernelWidth * mKernelHeight;
 | |
|         slice.src.stride[0] = mInputChannel * mKernelWidth * mKernelHeight * 4;
 | |
|         slice.src.stride[1] = mKernelWidth * mKernelHeight;
 | |
|         slice.src.stride[2] = 1;
 | |
|         slice.src.offset = so * mInputChannel * mKernelWidth * mKernelHeight;
 | |
|         slice.dst.stride[0] = mKernelWidth * mKernelHeight * 4;
 | |
|         slice.dst.stride[1] = mKernelWidth * mKernelHeight * UP_DIV(mOutputChannel, 4) * 4;
 | |
|         slice.dst.stride[2] = 4;
 | |
|         slice.dst.offset = so;
 | |
|         filterDes->regions.emplace_back(std::move(slice));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ConvBufExecution::transformWeight(const Tensor *weightDest, const Tensor *source) {
 | |
|     int co      = source->length(0);
 | |
|     int ci     = source->length(1);
 | |
|     int KernelY = source->length(2);
 | |
|     int KernelX = source->length(3);
 | |
| 
 | |
|     ::memset(weightDest->host<float>(), 0, weightDest->size());
 | |
| 
 | |
|     auto weightPtr      = source->host<float>();
 | |
|     for (int oz = 0; oz < co; ++oz) {
 | |
|         auto srcOz = weightPtr + oz * ci * KernelY * KernelX;
 | |
| 
 | |
|         int ozC4 = oz / 16;
 | |
|         int mx   = oz % 16;
 | |
| 
 | |
|         auto dstOz = weightDest->host<float>() + weightDest->stride(0) * ozC4 + mx;
 | |
|         for (int sz = 0; sz < ci; ++sz) {
 | |
|             int szC4         = sz / 16;
 | |
|             int my           = sz % 16;
 | |
|             auto srcSz       = srcOz + KernelY * KernelX * sz;
 | |
|             auto dstSz = dstOz + szC4 * weightDest->stride(1) + my * 16;
 | |
| 
 | |
|             for (int i = 0; i < KernelY * KernelX; ++i) {
 | |
|                 *(dstSz + i * weightDest->stride(2)) = srcSz[i];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| ConvBufExecution::ConvBufExecution(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const MNN::Op *op, Backend *backend)
 | |
|     : ConvBufCommonExecution(op->main_as_Convolution2D(), backend) {
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("Start ConvExecution init !\n");
 | |
| #endif
 | |
|     mOpenCLBackend                 = static_cast<OpenCLBackend *>(backend);
 | |
|     const auto *conv2dParams       = op->main_as_Convolution2D();
 | |
|     const auto *conv2dCommonParams = conv2dParams->common();
 | |
|     mConv2dParams                  = conv2dParams;
 | |
|     mConv2dCommonParams            = conv2dCommonParams;
 | |
|     mStrides                       = {conv2dCommonParams->strideY(), conv2dCommonParams->strideX()};
 | |
|     mDilations                     = {conv2dCommonParams->dilateY(), conv2dCommonParams->dilateX()};
 | |
| 
 | |
|     auto padding = ConvolutionCommon::convolutionPad(inputs[0], outputs[0], mConv2dCommonParams);
 | |
|     mPaddings[0] = padding.second;//padY
 | |
|     mPaddings[1] = padding.first;//padX
 | |
|         
 | |
|     mKernelWidth   = conv2dCommonParams->kernelX();
 | |
|     mKernelHeight  = conv2dCommonParams->kernelY();
 | |
|     mOutputChannel = conv2dCommonParams->outputCount();
 | |
|     std::string kernelName = "conv_2d_c4h1w4";
 | |
|     mInputChannel = inputs[0]->channel();
 | |
|     mUseSubgroup = mOpenCLBackend->getOpenCLRuntime()->getGpuType() == INTEL && mOpenCLBackend->getOpenCLRuntime()->isSupportedIntelSubgroup() && inputs.size() == 1 && mOutputChannel >= 16;
 | |
| 
 | |
|     std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
 | |
|     if (inputs.size() != 1) {
 | |
|         // Multi - Input
 | |
|         mConv1x1Opt = false;
 | |
|         mRasterExe.reset(new RasterBufExecution({mFilter.get()}, op, mOpenCLBackend));
 | |
|     } else {
 | |
|         int weightSize   = 0;
 | |
|         ConvolutionCommon::getConvParameters(&quanCommon, conv2dParams, &mFilterDataPtr, &weightSize);
 | |
|         //select opt conv method
 | |
|         mConv1x1Opt = (mKernelHeight == mKernelWidth && mKernelHeight == 1 && mPaddings[0] == 0 &&
 | |
|         mPaddings[1] == 0 && mStrides[0] == 1 && mStrides[1] == 1 && inputs[0]->width() >= 4);
 | |
|     }
 | |
|     if (mUseSubgroup) {
 | |
|         // create tensor for intel filter
 | |
|         mFilter.reset(Tensor::createDevice<float>(std::vector<int>{
 | |
|             UP_DIV(mOutputChannel, 16), UP_DIV(mInputChannel, 16), mKernelWidth * mKernelHeight, 16, 16}));
 | |
|         auto res = mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
 | |
|         cl_int ret_code;
 | |
|         if (!res) {
 | |
|             mValid = false;
 | |
|             return;
 | |
|         }
 | |
|         if (mFilterDataPtr != nullptr) {
 | |
|             std::shared_ptr<Tensor> sourceWeight(
 | |
|                 Tensor::create<float>(std::vector<int>{mOutputChannel, mInputChannel, mKernelWidth, mKernelHeight},
 | |
|                                       (void *)mFilterDataPtr, Tensor::CAFFE));
 | |
|             std::shared_ptr<Tensor> destWeight(Tensor::create<float>(std::vector<int>{
 | |
|                 UP_DIV(mOutputChannel, 16), UP_DIV(mInputChannel, 16), mKernelWidth * mKernelHeight, 16, 16}));
 | |
| 
 | |
|             transformWeight(destWeight.get(), sourceWeight.get());
 | |
|             auto weightDestSize = destWeight->size();
 | |
| 
 | |
|             auto buffer_size = destWeight->elementSize();
 | |
|             if (mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
 | |
|                 buffer_size *= sizeof(half_float::half);
 | |
|             } else {
 | |
|                 buffer_size *= sizeof(float);
 | |
|             }
 | |
| 
 | |
|             cl::Buffer &weightBuffer = *(cl::Buffer *)mFilter->buffer().device;
 | |
| 
 | |
|             auto runTime = mOpenCLBackend->getOpenCLRuntime();
 | |
|             auto queue   = runTime->commandQueue();
 | |
| 
 | |
|             auto weight_ptr = queue.enqueueMapBuffer(weightBuffer, CL_TRUE, CL_MAP_WRITE, 0, buffer_size, nullptr,
 | |
|                                                      nullptr, &ret_code);
 | |
|             if (weight_ptr != nullptr && ret_code == CL_SUCCESS) {
 | |
|                 if (mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
 | |
|                     for (int i = 0; i < destWeight->elementSize(); i++) {
 | |
|                         ((half_float::half *)weight_ptr)[i] = (half_float::half)(destWeight->host<float>()[i]);
 | |
|                     }
 | |
|                 } else {
 | |
|                     ::memcpy(weight_ptr, destWeight->host<float>(), buffer_size);
 | |
|                 }
 | |
|             } else {
 | |
|                 MNN_ERROR("Map error weightPtr == nullptr \n");
 | |
|             }
 | |
| 
 | |
|             queue.enqueueUnmapMemObject(weightBuffer, weight_ptr);
 | |
|         }
 | |
|     }else if (mConv1x1Opt) {
 | |
|         //At first, set packCout equal to 4
 | |
|         setConv1x1WeightBuffer(4, 4, mFilterDataPtr);
 | |
|         kernelName = "conv_2d_1x1_c4h1w4";
 | |
|     } else {
 | |
|         mFilter.reset(
 | |
|             Tensor::createDevice<float>({ROUND_UP(mOutputChannel, 4) * ROUND_UP(mInputChannel, 4) * mKernelWidth * mKernelHeight}));
 | |
|         if (mFilterDataPtr != nullptr) {
 | |
|             auto res = mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
 | |
|             if (!res) {
 | |
|                 mValid = false;
 | |
|                 return;
 | |
|             }
 | |
|             std::shared_ptr<Tensor> originBuffer(
 | |
|                 Tensor::createDevice<float>({mOutputChannel * mInputChannel * mKernelWidth * mKernelHeight}));
 | |
|             std::shared_ptr<Tensor> originBufferHost(
 | |
|                 Tensor::create<float>({mOutputChannel * mInputChannel * mKernelWidth * mKernelHeight}, (void*)mFilterDataPtr));
 | |
|             res = mOpenCLBackend->onAcquireBuffer(originBuffer.get(), Backend::STATIC);
 | |
|             if (!res) {
 | |
|                 mValid = false;
 | |
|                 return;
 | |
|             }
 | |
|             mOpenCLBackend->onCopyBuffer(originBufferHost.get(), originBuffer.get());
 | |
|             _generateFilterConvertRegion(mFilter.get(), originBuffer.get());
 | |
|             std::shared_ptr<Execution> raster(new RasterBufExecution({}, op, mOpenCLBackend));
 | |
|             raster->onResize({}, {mFilter.get()});
 | |
|             raster->onExecute({}, {mFilter.get()});
 | |
|             // STATIC mode's buffer will be released by tensor free
 | |
|         }
 | |
|     }
 | |
|     // Create Kernel
 | |
|     if (mConv2dCommonParams->relu()) {
 | |
|         mBuildOptions.emplace("-DRELU");
 | |
|     } else if (mConv2dCommonParams->relu6()) {
 | |
|         mBuildOptions.emplace("-DRELU6");
 | |
|     }
 | |
| 
 | |
|     mKernel           = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf", kernelName, mBuildOptions);
 | |
|     mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mKernel));
 | |
| 
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("end ConvExecution init !\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| ConvBufExecution::~ConvBufExecution() {
 | |
|     // Do nothing
 | |
| }
 | |
| 
 | |
| ErrorCode ConvBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("Start ConvExecution onResize !\n");
 | |
| #endif
 | |
|     auto input  = inputs[0];
 | |
|     auto output = outputs[0];
 | |
|     if (inputs.size() > 1) {
 | |
|         // Multi Input, need pretreat
 | |
|         _generateFilterConvertRegion(mFilter.get(), inputs[1]);
 | |
|         bool res = backend()->onAcquireBuffer(mFilter.get(), Backend::DYNAMIC);
 | |
|         if (!res) {
 | |
|             return OUT_OF_MEMORY;
 | |
|         }
 | |
|         mRasterExe->onResize({}, {mFilter.get()});
 | |
|     }
 | |
| 
 | |
|     std::vector<int> inputShape  = tensorShapeFormat(input);
 | |
|     std::vector<int> outputShape = tensorShapeFormat(output);
 | |
|     const int height             = outputShape.at(1);
 | |
|     const int width              = outputShape.at(2);
 | |
|     const int outChannel         = outputShape.at(3);
 | |
| 
 | |
|     const int inputHeight   = inputShape.at(1);
 | |
|     const int inputWidth    = inputShape.at(2);
 | |
|     const int inputChannels = inputShape.at(3);
 | |
| 
 | |
|     const int inputChannelBlocks = UP_DIV(inputChannels, 4);
 | |
|     auto padding = ConvolutionCommon::convolutionPad(input, output, mConv2dCommonParams);
 | |
|     mPaddings[0] = padding.second;//padY
 | |
|     mPaddings[1] = padding.first;//padX
 | |
|     
 | |
|     std::string info = std::to_string(inputChannels) + "_" + std::to_string(mKernelHeight) + "_" + std::to_string(mKernelWidth) + "_" + std::to_string(mStrides[0]) + "_" + std::to_string(mStrides[1]) + "_" + std::to_string(mDilations[0]) + "_" + std::to_string(mDilations[1]);
 | |
|     if (mUseSubgroup) {
 | |
|         // create temp buffer for subgroup
 | |
|         int input_width_pad = mStrides[1] * (8 - 1) + (mKernelWidth - 1) * mDilations[1] + 1 + width * mStrides[1] + mPaddings[1];
 | |
|         int input_height_pad = inputHeight + 2 * mPaddings[0];
 | |
|         if (input->channel() >=16){
 | |
|             mSource.reset(Tensor::createDevice<float>(std::vector<int>{inputShape.at(0), UP_DIV(input->channel(), 16),(input_height_pad) * (input_width_pad), 16}, Tensor::CAFFE_C4));
 | |
|         } else {
 | |
|             input_width_pad = inputWidth;
 | |
|             input_height_pad = inputHeight;
 | |
|             mSource.reset(Tensor::createDevice<float>(std::vector<int>{inputShape.at(0), input->channel(), inputHeight, inputWidth}, Tensor::CAFFE_C4));
 | |
|         }
 | |
|         std::string kernelName[3];
 | |
|         uint32_t MaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->MaxWorkGroupSize());
 | |
|         uint32_t MaxThreadsPerDevice = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->MaxThreadsPerDevice());
 | |
|         bool isSupportedFP16 = mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16();
 | |
| 
 | |
|         mOpenCLBackend->onAcquireBuffer(mSource.get(), Backend::DYNAMIC);
 | |
|         mOpenCLBackend->onReleaseBuffer(mSource.get(), Backend::DYNAMIC);
 | |
| 
 | |
|         int inputImageShape[2]             = {inputHeight, inputWidth};
 | |
|         int outputImageShape[2]            = {height, width};
 | |
|         int kernelShape[2]                 = {mKernelHeight, mKernelWidth};
 | |
|         int strideShape[2]                 = {mStrides[0], mStrides[1]};
 | |
|         int paddingShape[2]                = {mPaddings[0], mPaddings[1]};
 | |
|         int dilationShape[2]               = {mDilations[0], mDilations[1]};
 | |
|         std::set<std::string> buildOptions = mBuildOptions;
 | |
|         auto tune_param = GetTuningParams(inputs, outputs, MaxWorkGroupSize, isSupportedFP16, MaxThreadsPerDevice);
 | |
|         uint32_t blockWidth = tune_param.first;
 | |
|         uint32_t sub_group_size = 16;
 | |
|         uint32_t slm_div_factor = tune_param.second;
 | |
|         uint32_t work_group_size = sub_group_size * slm_div_factor;
 | |
|         uint32_t feature_block_size = 16;        
 | |
|         uint32_t input_line_size = strideShape[1] * (blockWidth - 1) + (kernelShape[1] - 1) * dilationShape[1] + 1;
 | |
|         uint32_t input_block_size = UP_DIV(input_line_size * kernelShape[0], sub_group_size);
 | |
|         buildOptions.emplace("-DOUTPUT_X_BLOCK_SIZE=" + std::to_string(blockWidth));
 | |
|         buildOptions.emplace("-DINPUT_LINE_SIZE=" + std::to_string(input_line_size));
 | |
|         buildOptions.emplace("-DINPUT_BLOCK_SIZE=" + std::to_string(input_block_size));
 | |
|         buildOptions.emplace("-DSUB_GROUP_SIZE=" + std::to_string(sub_group_size));
 | |
|         buildOptions.emplace("-DX_BLOCKS=" + std::to_string(UP_DIV(outputImageShape[1], blockWidth)));
 | |
|         buildOptions.emplace("-DSLM_DIV_FACTOR=" + std::to_string(slm_div_factor));
 | |
|         buildOptions.emplace("-DWORK_GROUP_SIZE=" + std::to_string(work_group_size));
 | |
|         buildOptions.emplace("-DIC_BLOCKS=" + std::to_string(UP_DIV(inputChannels, feature_block_size)));
 | |
|         buildOptions.emplace("-DINPUT_CHANNEL=" + std::to_string(inputChannels));
 | |
|         buildOptions.emplace("-DOUTPUT_CHANNEL=" + std::to_string(outChannel));
 | |
|         buildOptions.emplace("-DFILTER_HEIGHT=" + std::to_string(kernelShape[0]));
 | |
|         buildOptions.emplace("-DFILTER_WIDTH=" + std::to_string(kernelShape[1]));
 | |
|         buildOptions.emplace("-DDILATION_HEIGHT=" + std::to_string(dilationShape[0]));
 | |
|         buildOptions.emplace("-DDILATION_WIDTH=" + std::to_string(dilationShape[1]));
 | |
|         buildOptions.emplace("-DSTRIDE_HEIGHT=" + std::to_string(strideShape[0]));
 | |
|         buildOptions.emplace("-DSTRIDE_WIDTH=" + std::to_string(strideShape[1]));
 | |
|         buildOptions.emplace("-DINPUT_HEIGHT=" + std::to_string(inputImageShape[0]));
 | |
|         buildOptions.emplace("-DINPUT_WIDTH=" + std::to_string(inputImageShape[1]));
 | |
|         buildOptions.emplace("-DOUTPUT_HEIGHT=" + std::to_string(outputImageShape[0]));
 | |
|         buildOptions.emplace("-DOUTPUT_WIDTH=" + std::to_string(outputImageShape[1]));
 | |
|         buildOptions.emplace("-DPADDING_HEIGHT=" + std::to_string(paddingShape[0]));
 | |
|         buildOptions.emplace("-DPADDING_WIDTH=" + std::to_string(paddingShape[1]));
 | |
|         buildOptions.emplace("-DINPUT_HEIGHT_PAD=" + std::to_string(input_height_pad));
 | |
|         buildOptions.emplace("-DINPUT_WIDTH_PAD=" + std::to_string(input_width_pad));
 | |
|         if (outChannel % feature_block_size != 0) {
 | |
|              buildOptions.emplace("-DOUTPUT_LEFTOVERS=" + std::to_string(1));
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             uint32_t channel_block = 4;
 | |
|             if (inputChannels < 16) {
 | |
|                 kernelName[0] = "transpose_c1";
 | |
|                 mKernelSub[0] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf_subgroup", kernelName[0], buildOptions);
 | |
|             } else {
 | |
|                 kernelName[0] = "transpose_c16";
 | |
|                 mKernelSub[0] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf_subgroup", kernelName[0], buildOptions);
 | |
|                 channel_block = 16;
 | |
|             }
 | |
|             uint32_t mMaxWGS_S = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mKernelSub[0]));
 | |
| 
 | |
|             mGlobalWorkSizeSub[0] = {static_cast<uint32_t>(input_width_pad), static_cast<uint32_t>(input_height_pad),
 | |
|                                      static_cast<uint32_t>(inputShape.at(0) * UP_DIV(inputShape.at(3), channel_block))};
 | |
|             uint32_t idx      = 0;
 | |
|             mKernelSub[0].setArg(idx++, mGlobalWorkSizeSub[0][0]);
 | |
|             mKernelSub[0].setArg(idx++, mGlobalWorkSizeSub[0][1]);
 | |
|             mKernelSub[0].setArg(idx++, mGlobalWorkSizeSub[0][2]);
 | |
|             mKernelSub[0].setArg(idx++, openCLBuffer(input));
 | |
|             mKernelSub[0].setArg(idx++, openCLBuffer(mSource.get()));
 | |
|             mKernelSub[0].setArg(idx++, UP_DIV(inputShape.at(3), channel_block));
 | |
| 
 | |
|             mLocalWorkSizeSub[0]  = localWS3DDefault(mGlobalWorkSizeSub[0], mMaxWGS_S, mOpenCLBackend->getOpenCLRuntime(), kernelName[0], mKernelSub[0]).first;
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             if (inputChannels < 16){
 | |
|                 kernelName[1] = "conv_2d_buf_subgroup_c1";
 | |
|                 mKernelSub[1] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf_subgroup", kernelName[1], buildOptions);
 | |
|             } else {
 | |
|                 kernelName[1] = "conv_2d_buf_subgroup_c16";
 | |
|                 mKernelSub[1] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf_subgroup", kernelName[1], buildOptions);
 | |
|             }
 | |
| 
 | |
|             mGlobalWorkSizeSub[1] = {static_cast<uint32_t>(UP_DIV(outputShape.at(2), blockWidth) * outputShape.at(1)),
 | |
|                                      static_cast<uint32_t>(ROUND_UP(outputShape.at(3), sub_group_size) * slm_div_factor),
 | |
|                                  static_cast<uint32_t>(outputShape.at(0))};
 | |
|             mLocalWorkSizeSub[1]  = {1, static_cast<uint32_t>(sub_group_size * slm_div_factor), 1};
 | |
|             uint32_t idx      = 0;
 | |
|             mKernelSub[1].setArg(idx++, openCLBuffer(mSource.get()));
 | |
|             mKernelSub[1].setArg(idx++, openCLBuffer(output));
 | |
|             mKernelSub[1].setArg(idx++, openCLBuffer(mFilter.get()));
 | |
|             mKernelSub[1].setArg(idx++, openCLBuffer(mBias.get()));
 | |
|         }
 | |
|     }else if (mConv1x1Opt) {
 | |
|     
 | |
|         // {"conv_2d_1x1_c4h1w4", "conv_2d_1x1_c4h1w2", "conv_2d_1x1_c4h1w1", "conv_2d_1x1_c8h1w4"};
 | |
|         const int total_kernel = 5;
 | |
|         std::string kernelName[total_kernel] = {"conv_2d_1x1_c4h1w4", "conv_2d_1x1_c4h1w2", "conv_2d_1x1_c4h1w1", "conv_2d_1x1_c8h1w4", "conv_2d_1x1_c8h1w2"};
 | |
|         int itemC[total_kernel] = {4, 4, 4, 8, 8};
 | |
|         int itemW[total_kernel] = {4, 2, 1, 4, 2};
 | |
|         int c8_index_start = 3;
 | |
|         
 | |
|         int actual_kernel = total_kernel;
 | |
|         if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal) {
 | |
|             actual_kernel = 2;
 | |
|             kernelName[0] = "conv_2d_1x1_c4h1w1";
 | |
|             itemC[0]      = 4;
 | |
|             itemW[0]      = 1;
 | |
| 
 | |
|             kernelName[1] = "conv_2d_1x1_c8h1w2";
 | |
|             itemC[1]      = 8;
 | |
|             itemW[1]      = 2;
 | |
|             c8_index_start = 1;
 | |
|         } else if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
 | |
|             actual_kernel = 1;
 | |
|             
 | |
|             kernelName[0] = "conv_2d_1x1_c8h1w2";
 | |
|             itemC[0]      = 8;
 | |
|             itemW[0]      = 2;
 | |
|             c8_index_start = 0;
 | |
|         }
 | |
|         
 | |
|         cl::Kernel kernel[total_kernel];
 | |
|         std::vector<uint32_t> globalWorkSize[total_kernel];
 | |
|         std::vector<uint32_t> localWorkSize[total_kernel];
 | |
|         std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
 | |
|         for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
 | |
|             kernel[knl_idx]        = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf", kernelName[knl_idx], mBuildOptions);
 | |
|             uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
 | |
|             
 | |
|             uint32_t idx            = 0;
 | |
|             
 | |
|             globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * outputShape.at(1))};
 | |
|             
 | |
|             kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][0]);
 | |
|             kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][1]);
 | |
|             kernel[knl_idx].setArg(idx++, UP_DIV(width, itemW[knl_idx]));
 | |
|             kernel[knl_idx].setArg(idx++, openCLBuffer(input));
 | |
|             kernel[knl_idx].setArg(idx++, *mKernelBuffer.get());
 | |
|             kernel[knl_idx].setArg(idx++, openCLBuffer(mBias.get()));
 | |
|             kernel[knl_idx].setArg(idx++, openCLBuffer(output));
 | |
|             kernel[knl_idx].setArg(idx++, static_cast<int>(inputChannelBlocks));
 | |
|             kernel[knl_idx].setArg(idx++, height);
 | |
|             kernel[knl_idx].setArg(idx++, width);
 | |
|             kernel[knl_idx].setArg(idx++, UP_DIV(outChannel, 4));
 | |
|             
 | |
|             std::pair<std::vector<uint32_t>, int> retTune;
 | |
|             retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
 | |
|             //printf("cov1x1 %d, %d\n", knl_idx, retTune.second);
 | |
|             if(min_cost.first > retTune.second) {
 | |
|                 min_cost.first = retTune.second;
 | |
|                 min_cost.second = knl_idx;
 | |
|                 mLocalWorkSize = {retTune.first[0], retTune.first[1]};
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
 | |
|         int min_index  = min_cost.second;
 | |
|         if(min_index >= c8_index_start) {//if best kernel is "conv_2d_1x1_c8h1w4", set weight packCout to 8
 | |
|             int weightSize   = 0;
 | |
|             ConvolutionCommon::getConvParameters(&quanCommon, mConv2dParams, &mFilterDataPtr, &weightSize);
 | |
|             setConv1x1WeightBuffer(8, 4, mFilterDataPtr);
 | |
|         }
 | |
|         mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
 | |
|         
 | |
|         mKernel        = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf", kernelName[min_index], mBuildOptions);
 | |
|         uint32_t idx            = 0;
 | |
|         mKernel.setArg(idx++, mGlobalWorkSize[0]);
 | |
|         mKernel.setArg(idx++, mGlobalWorkSize[1]);
 | |
|         mKernel.setArg(idx++, UP_DIV(width, itemW[min_index]));
 | |
|         mKernel.setArg(idx++, openCLBuffer(input));
 | |
|         mKernel.setArg(idx++, *mKernelBuffer.get());
 | |
|         mKernel.setArg(idx++, openCLBuffer(mBias.get()));
 | |
|         mKernel.setArg(idx++, openCLBuffer(output));
 | |
|         mKernel.setArg(idx++, static_cast<int>(inputChannelBlocks));
 | |
|         mKernel.setArg(idx++, height);
 | |
|         mKernel.setArg(idx++, width);
 | |
|         mKernel.setArg(idx++, UP_DIV(outChannel, 4));
 | |
|         
 | |
|         //printf("conv1x1 %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outChannel, width);
 | |
|     } else {
 | |
|         int inputImageShape[2]  = {inputHeight, inputWidth};
 | |
|         int outputImageShape[2] = {height, width};
 | |
|         int kernelShape[2]      = {mKernelHeight, mKernelWidth};
 | |
|         int strideShape[2]      = {mStrides[0], mStrides[1]};
 | |
|         int paddingShape[2]     = {mPaddings[0], mPaddings[1]};
 | |
|         int dilationShape[2]    = {mDilations[0], mDilations[1]};
 | |
|         
 | |
|         // {"conv_2d_c4h1w2", "conv_2d_c4h1w1", "conv_2d_c8h1w1", "conv_2d_c4h1w4", "conv_2d_c8h2w1", "conv_2d_c4h4w1"};
 | |
|         const int total_kernel = 6;
 | |
|         std::string kernelName[total_kernel] = {"conv_2d_c4h1w1", "conv_2d_c4h1w2", "conv_2d_c4h4w1", "conv_2d_c8h2w1", "conv_2d_c8h4w1", "conv_2d_c4h1w4"};
 | |
|         int itemC[total_kernel] = {4, 4, 4, 8, 8, 4};
 | |
|         int itemH[total_kernel] = {1, 1, 4, 2, 4, 1};
 | |
|         int itemW[total_kernel] = {1, 2, 1, 1, 1, 4};
 | |
|         
 | |
|         
 | |
|         int actual_kernel = total_kernel;
 | |
|         if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal) {
 | |
|             actual_kernel = 2;
 | |
|         } else if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast) {
 | |
|             actual_kernel = 1;
 | |
|         }else if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Wide){
 | |
|             actual_kernel = 4;
 | |
|             auto gpuType = mOpenCLBackend->getOpenCLRuntime()->getGpuType();
 | |
|             auto maliArType = mOpenCLBackend->getOpenCLRuntime()->getMaliAr();
 | |
|             if(gpuType == MNN::MALI && maliArType == MNN::VALHALL){
 | |
|                 if(outputShape.at(3) <= 8){
 | |
|                     kernelName[3] = "conv_2d_c4h1w4";
 | |
|                     itemC[3]      = 4;
 | |
|                     itemH[3]      = 1;
 | |
|                     itemW[3]      = 4;
 | |
|                 }else{
 | |
|                     kernelName[2] = "conv_2d_c8h2w1";
 | |
|                     itemC[2]      = 8;
 | |
|                     itemH[2]      = 2;
 | |
|                     itemW[2]      = 1;
 | |
|                                 
 | |
|                     kernelName[3] = "conv_2d_c8h4w1";
 | |
|                     itemC[3]      = 8;
 | |
|                     itemH[3]      = 4;
 | |
|                     itemW[3]      = 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         cl::Kernel kernel[total_kernel];
 | |
|         std::vector<uint32_t> globalWorkSize[total_kernel];
 | |
|         std::vector<uint32_t> localWorkSize[total_kernel];
 | |
|         std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
 | |
|         for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
 | |
|             kernel[knl_idx]        = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf", kernelName[knl_idx], mBuildOptions);
 | |
|             uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
 | |
|             
 | |
|             globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * UP_DIV(outputShape.at(1), itemH[knl_idx]))};
 | |
|             uint32_t idx            = 0;
 | |
|             kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][0]);
 | |
|             kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][1]);
 | |
|             kernel[knl_idx].setArg(idx++, openCLBuffer(input));
 | |
|             kernel[knl_idx].setArg(idx++, openCLBuffer(mFilter.get()));
 | |
|             kernel[knl_idx].setArg(idx++, openCLBuffer(mBias.get()));
 | |
|             kernel[knl_idx].setArg(idx++, openCLBuffer(output));
 | |
|             kernel[knl_idx].setArg(idx++, sizeof(inputImageShape), inputImageShape);
 | |
|             kernel[knl_idx].setArg(idx++, inputChannels);
 | |
|             kernel[knl_idx].setArg(idx++, inputChannelBlocks);
 | |
|             kernel[knl_idx].setArg(idx++, sizeof(outputImageShape), outputImageShape);
 | |
|             kernel[knl_idx].setArg(idx++, sizeof(kernelShape), kernelShape);
 | |
|             kernel[knl_idx].setArg(idx++, sizeof(strideShape), strideShape);
 | |
|             kernel[knl_idx].setArg(idx++, sizeof(paddingShape), paddingShape);
 | |
|             kernel[knl_idx].setArg(idx++, sizeof(dilationShape), dilationShape);
 | |
|             kernel[knl_idx].setArg(idx++, UP_DIV(width, itemW[knl_idx]));
 | |
|             kernel[knl_idx].setArg(idx++, UP_DIV(outChannel, 4));
 | |
|             kernel[knl_idx].setArg(idx++, UP_DIV(height, itemH[knl_idx]));
 | |
|             
 | |
|             std::pair<std::vector<uint32_t>, int> retTune;
 | |
|             retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx] + info, maxWorkGroupSize);
 | |
| 
 | |
|             if(min_cost.first > retTune.second) {
 | |
|                 min_cost.first = retTune.second;
 | |
|                 min_cost.second = knl_idx;
 | |
|                 mLocalWorkSize = {retTune.first[0], retTune.first[1]};
 | |
|             }
 | |
|         }
 | |
|         int min_index  = min_cost.second;
 | |
|         mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
 | |
|         
 | |
|         mKernel        = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_buf", kernelName[min_index], mBuildOptions);
 | |
|         
 | |
|         uint32_t idx            = 0;
 | |
|         mKernel.setArg(idx++, mGlobalWorkSize[0]);
 | |
|         mKernel.setArg(idx++, mGlobalWorkSize[1]);
 | |
|         mKernel.setArg(idx++, openCLBuffer(input));
 | |
|         mKernel.setArg(idx++, openCLBuffer(mFilter.get()));
 | |
|         mKernel.setArg(idx++, openCLBuffer(mBias.get()));
 | |
|         mKernel.setArg(idx++, openCLBuffer(output));
 | |
|         mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
 | |
|         mKernel.setArg(idx++, inputChannels);
 | |
|         mKernel.setArg(idx++, inputChannelBlocks);
 | |
|         mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
 | |
|         mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
 | |
|         mKernel.setArg(idx++, sizeof(strideShape), strideShape);
 | |
|         mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
 | |
|         mKernel.setArg(idx++, sizeof(dilationShape), dilationShape);
 | |
|         mKernel.setArg(idx++, UP_DIV(width, itemW[min_index]));
 | |
|         mKernel.setArg(idx++, UP_DIV(outChannel, 4));
 | |
|         mKernel.setArg(idx++, UP_DIV(height, itemH[min_index]));
 | |
|     }
 | |
|     if (inputs.size() > 1) {
 | |
|         backend()->onReleaseBuffer(mFilter.get(), Backend::DYNAMIC);
 | |
|     }
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("end ConvExecution onResize !\n");
 | |
| #endif
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode ConvBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("Start ConvExecution onExecute !\n");
 | |
| #endif
 | |
|     if (inputs.size() > 1) {
 | |
|         mRasterExe->onExecute({}, {mFilter.get()});
 | |
|         if (inputs.size() > 2) {
 | |
|             auto buffer_size = inputs[2]->elementSize();
 | |
|             if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
 | |
|                 buffer_size *= sizeof(half_float::half);
 | |
|             } else {
 | |
|                 buffer_size *= sizeof(float);
 | |
|             }
 | |
|             mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueCopyBuffer(openCLBuffer(inputs[2]), openCLBuffer(mBias.get()), 0, 0, buffer_size);
 | |
|         }
 | |
|     }
 | |
| #ifdef ENABLE_OPENCL_TIME_PROFILER
 | |
|     if (mUseSubgroup) {
 | |
|         int costTime = 0;
 | |
|         for (int i = 0; i < 2; i++) {
 | |
|             cl::Event event;
 | |
|             run3DKernelDefault(mKernelSub[i], mGlobalWorkSizeSub[i], mLocalWorkSizeSub[i],
 | |
|                                mOpenCLBackend->getOpenCLRuntime(), &event);
 | |
|             int costTime0 = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | |
|             costTime += costTime0;
 | |
|             MNN_PRINT("kernel cost:%d    us ConvBuf2DSub step %d\n", costTime0, i);
 | |
|         }
 | |
|         MNN_PRINT("kernel cost:%d    us total ConvBuf2DSub\n", costTime);
 | |
|     } else {
 | |
|         cl::Event event;
 | |
|         runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime(), &event);
 | |
|         int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | |
|         MNN_PRINT("kernel cost:%d    us ConvBuf2D\n",costTime);
 | |
|     }  
 | |
| #else
 | |
|     if (mUseSubgroup) {
 | |
|         for (int i = 0; i < 2; i++) {
 | |
|             run3DKernelDefault(mKernelSub[i], mGlobalWorkSizeSub[i], mLocalWorkSizeSub[i],
 | |
|                                mOpenCLBackend->getOpenCLRuntime());
 | |
|         }
 | |
|     } else {
 | |
|         runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
 | |
|     }
 | |
| #endif
 | |
|     
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("end ConvExecution onExecute !\n");
 | |
| #endif
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class ConvolutionBufCreator : public OpenCLBackend::Creator {
 | |
| public:
 | |
|     virtual ~ConvolutionBufCreator() = default;
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const override {
 | |
|         if (nullptr != op->main_as_Convolution2D()->quanParameter()) {
 | |
|             auto quan = op->main_as_Convolution2D()->quanParameter();
 | |
|             if (1 == quan->type() || 2 == quan->type()) {
 | |
|                 if (quan->has_scaleInt()) {
 | |
|                     // Don't support IDST-int8 because of error
 | |
|                     return nullptr;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         if (inputs.size() > 1) {
 | |
|             // Multi inputs
 | |
|             return new ConvBufExecution(inputs, outputs, op, backend);
 | |
|         }
 | |
|         auto conv2D = op->main_as_Convolution2D();
 | |
|         if (ConvBufWinograd::valid(conv2D->common(), inputs[0], outputs[0], static_cast<OpenCLBackend *>(backend)->getOpenCLRuntime()->getGpuType() == INTEL)) {
 | |
|             return new ConvBufWinograd(conv2D, backend);
 | |
|         }
 | |
|         return new ConvBufExecution(inputs, outputs, op, backend);
 | |
|     }
 | |
| };
 | |
| 
 | |
| OpenCLCreatorRegister<ConvolutionBufCreator> __convBuf_op(OpType_Convolution, BUFFER);
 | |
| 
 | |
| } // namespace OpenCL
 | |
| } // namespace MNN
 | |
| #endif /* MNN_OPENCL_BUFFER_CLOSED */
 |