mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			141 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | ||
| //  MatmulBufExecution.cpp
 | ||
| //  MNN
 | ||
| //
 | ||
| //  Created by MNN on 2019/02/28.
 | ||
| //  Copyright © 2018, Alibaba Group Holding Limited
 | ||
| //
 | ||
| 
 | ||
| #ifndef MNN_OPENCL_BUFFER_CLOSED
 | ||
| 
 | ||
| #include "backend/opencl/execution/buffer/MatmulBufExecution.hpp"
 | ||
| 
 | ||
| namespace MNN {
 | ||
| namespace OpenCL {
 | ||
| 
 | ||
| MatMulBufExecution::MatMulBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend,
 | ||
|                                  bool transposeA, bool transposeB) : Execution(backend)
 | ||
|                                  , mTransposeA(transposeA), mTransposeB(transposeB){
 | ||
|     mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
 | ||
| }
 | ||
| ErrorCode MatMulBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | ||
|     auto runtime = mOpenCLBackend->getOpenCLRuntime();
 | ||
| 
 | ||
|     Tensor *input0 = inputs[0];
 | ||
|     Tensor *input1 = inputs[1];
 | ||
|     Tensor *output = outputs[0];
 | ||
| 
 | ||
|     std::vector<int> input0Shape = tensorShapeFormat(input0);
 | ||
|     std::vector<int> input1Shape = tensorShapeFormat(input1);
 | ||
|     std::vector<int> outputShape = tensorShapeFormat(output);
 | ||
|     
 | ||
|     if (mKernel.get() == nullptr) {
 | ||
|         std::set<std::string> buildOptions;
 | ||
|         if(mTransposeA) {
 | ||
|             mKernelName = mTransposeB ? "matmul_transA_transB_buf":"matmul_transA_buf";
 | ||
|         } else {
 | ||
|             mKernelName = mTransposeB ? "matmul_transB_buf":"matmul_buf";
 | ||
|         }
 | ||
| 
 | ||
|         if(inputs.size() > 2) {
 | ||
|             buildOptions.emplace("-DBIAS");
 | ||
|         }
 | ||
|         mKernel           = runtime->buildKernel("matmul_buf", mKernelName, buildOptions);
 | ||
|         mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
 | ||
|     }
 | ||
| 
 | ||
|     //处理二维矩阵相乘,N C相当于H W
 | ||
|     //二维矩阵相乘
 | ||
|     cl_int ret = CL_SUCCESS;
 | ||
|     if(mTransposeA) {
 | ||
|         const int height        = input0Shape.at(3);//input0 H
 | ||
|         const int outputChannel = input0Shape.at(0);//input0 W
 | ||
|         const int width         = mTransposeB ? input1Shape.at(0): input1Shape.at(3);//input1 WW
 | ||
|         const int outputChannelBlocks = UP_DIV(outputChannel, 4);
 | ||
|         const int widthblocks         = UP_DIV(width, 4);
 | ||
|         const int heightblocks        = UP_DIV(height, 4);
 | ||
|         
 | ||
|         mGlobalWorkSize = {static_cast<uint32_t>(widthblocks), static_cast<uint32_t>(heightblocks)};
 | ||
|         int idx            = 0;
 | ||
|         ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
 | ||
|         ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
 | ||
|         ret |= mKernel.setArg(idx++, openCLBuffer(input0));
 | ||
|         ret |= mKernel.setArg(idx++, openCLBuffer(input1));
 | ||
|         if(inputs.size() > 2) {
 | ||
|             ret |= mKernel.setArg(idx++, openCLBuffer(inputs[2]));
 | ||
|         }
 | ||
|         ret |= mKernel.setArg(idx++, openCLBuffer(output));
 | ||
|         ret |= mKernel.setArg(idx++, static_cast<int>(outputChannel));
 | ||
|         ret |= mKernel.setArg(idx++, static_cast<int>(outputChannelBlocks));
 | ||
|         ret |= mKernel.setArg(idx++, static_cast<int>(height));
 | ||
|         ret |= mKernel.setArg(idx++, static_cast<int>(heightblocks));
 | ||
|         ret |= mKernel.setArg(idx++, static_cast<int>(widthblocks));
 | ||
|         
 | ||
|         mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, mKernel).first;
 | ||
|     }
 | ||
|     else {
 | ||
|         const int height        = input0Shape.at(0);//input0 H
 | ||
|         const int outputChannel = input0Shape.at(3);//input0 W
 | ||
|         const int width         = mTransposeB ? input1Shape.at(0): input1Shape.at(3);//input1 W
 | ||
|         const int outputChannelBlocks = UP_DIV(outputChannel, 4);
 | ||
|         const int widthblocks         = UP_DIV(width, 4);
 | ||
|         
 | ||
|         mGlobalWorkSize = {static_cast<uint32_t>(widthblocks), static_cast<uint32_t>(height)};
 | ||
|         int idx            = 0;
 | ||
|         ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
 | ||
|         ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
 | ||
|         ret |= mKernel.setArg(idx++, openCLBuffer(input0));
 | ||
|         ret |= mKernel.setArg(idx++, openCLBuffer(input1));
 | ||
|         if(inputs.size() > 2) {
 | ||
|             ret |= mKernel.setArg(idx++, openCLBuffer(inputs[2]));
 | ||
|         }
 | ||
|         ret |= mKernel.setArg(idx++, openCLBuffer(output));
 | ||
|         ret |= mKernel.setArg(idx++, static_cast<int>(outputChannel));
 | ||
|         ret |= mKernel.setArg(idx++, static_cast<int>(outputChannelBlocks));
 | ||
|         ret |= mKernel.setArg(idx++, static_cast<int>(widthblocks));
 | ||
|         
 | ||
|         mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, mKernel).first;
 | ||
|     }
 | ||
|     MNN_CHECK_CL_SUCCESS(ret, "matmul_buf");
 | ||
|     return NO_ERROR;
 | ||
| }
 | ||
| 
 | ||
| ErrorCode MatMulBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | ||
| 
 | ||
| #ifdef LOG_VERBOSE
 | ||
|     MNN_PRINT("Start MatMulBufExecution onExecute... \n");
 | ||
| #endif
 | ||
| 
 | ||
|     auto runtime = mOpenCLBackend->getOpenCLRuntime();
 | ||
| 
 | ||
|     #ifdef ENABLE_OPENCL_TIME_PROFILER
 | ||
|         cl::Event event;
 | ||
|         runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, runtime, &event);
 | ||
|         
 | ||
|         int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | ||
|         MNN_PRINT("kernel cost:%d    us MatmulBuf\n",costTime);
 | ||
|     #else
 | ||
|     runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, runtime, nullptr);
 | ||
|     #endif
 | ||
|     
 | ||
| #ifdef LOG_VERBOSE
 | ||
|     MNN_PRINT("End MatMulBufExecution onExecute... \n");
 | ||
| #endif
 | ||
|     return NO_ERROR;
 | ||
| }
 | ||
| 
 | ||
| class MatMulBufCreator : public OpenCLBackend::Creator {
 | ||
| public:
 | ||
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | ||
|                                 const MNN::Op *op, Backend *backend) const override {
 | ||
|         auto param = op->main_as_MatMul();
 | ||
|         return new MatMulBufExecution(inputs, op, backend, param->transposeA(), param->transposeB());
 | ||
|     }
 | ||
| };
 | ||
| 
 | ||
| OpenCLCreatorRegister<MatMulBufCreator> __matmulBuf_op(OpType_MatMul, BUFFER);
 | ||
| 
 | ||
| } // namespace OpenCL
 | ||
| } // namespace MNN
 | ||
| #endif /* MNN_OPENCL_BUFFER_CLOSED */
 |