mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			148 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  PoolBufExecution.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/02/28.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #ifndef MNN_OPENCL_BUFFER_CLOSED
 | |
| 
 | |
| #include "backend/opencl/execution/buffer/PoolBufExecution.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| #include "backend/opencl/core/OpenCLBackend.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| namespace OpenCL {
 | |
| 
 | |
| PoolBufExecution::PoolBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
 | |
|     : Execution(backend) {
 | |
|     mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
 | |
|     mPoolParams    = op->main_as_Pool();
 | |
|     mPoolType      = mPoolParams->type();
 | |
| 
 | |
|     mStrides[0] = mPoolParams->strideY();
 | |
|     mStrides[1] = mPoolParams->strideX();
 | |
|     mKernels[0] = mPoolParams->kernelY();
 | |
|     mKernels[1] = mPoolParams->kernelX();
 | |
| 
 | |
|     mPaddings[0] = mPoolParams->padY() * 2;
 | |
|     mPaddings[1] = mPoolParams->padX() * 2;
 | |
|     mPadType     = mPoolParams->padType();
 | |
|     if (mPadType == PoolPadType_VALID) {
 | |
|         mPaddings[0] = 0;
 | |
|         mPaddings[1] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| ErrorCode PoolBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("start PoolBufExecution onResize !\n");
 | |
| #endif
 | |
|     auto input  = inputs[0];
 | |
|     auto output = outputs[0];
 | |
| 
 | |
|     if (mPoolParams->isGlobal()) {
 | |
|         std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
 | |
|         mKernels                    = {inputShape.at(1), inputShape.at(2)};
 | |
|         mStrides                    = {inputShape.at(1), inputShape.at(2)};
 | |
|         mPaddings                   = {0, 0};
 | |
|     }
 | |
| 
 | |
|     if (mPadType == PoolPadType_SAME) {
 | |
|         int padNeededHeight = std::max(0, (output->height() - 1) * mStrides[0] + mKernels[0] - input->height());
 | |
|         int padNeededWidth  = std::max(0, (output->width() - 1) * mStrides[1] + mKernels[1] - input->width());
 | |
| 
 | |
|         mPaddings[0] = padNeededHeight;
 | |
|         mPaddings[1] = padNeededWidth;
 | |
|     }
 | |
| 
 | |
|     MNN_ASSERT(mDilations[0] == 1 && mDilations[1] == 1);
 | |
| 
 | |
|     std::vector<int> inputShape  = tensorShapeFormat(input);
 | |
|     std::vector<int> outputShape = tensorShapeFormat(output);
 | |
| 
 | |
|     const int batch        = outputShape.at(0);
 | |
|     const int outputHeight = outputShape.at(1);
 | |
|     const int outputWidth  = outputShape.at(2);
 | |
|     const int channels     = outputShape.at(3);
 | |
| 
 | |
|     const int inputHeight = inputShape.at(1);
 | |
|     const int inputWidth  = inputShape.at(2);
 | |
|     int channelBlocks = (channels + 3) / 4;
 | |
|     
 | |
|     std::set<std::string> buildOptions;
 | |
|     std::string kernelName = "pooling";
 | |
|     auto runtime           = mOpenCLBackend->getOpenCLRuntime();
 | |
| 
 | |
|     if (mPoolType == PoolType_AVEPOOL) {
 | |
|         buildOptions.emplace("-DPOOL_AVG");
 | |
|     }
 | |
|     
 | |
|     mKernel           = runtime->buildKernel("pooling_buf", kernelName, buildOptions);
 | |
|     mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
 | |
|     
 | |
|     mGlobalWorkSize = {
 | |
|         static_cast<uint32_t>(outputWidth),
 | |
|         static_cast<uint32_t>(batch * outputHeight),
 | |
|         static_cast<uint32_t>(channelBlocks),
 | |
|     };
 | |
| 
 | |
|     int inputImageShape[2] = {inputHeight, inputWidth};
 | |
|     int outputImageShape[2] = {outputHeight, outputWidth};
 | |
|     int paddingShape[2]    = {mPaddings[0] / 2, mPaddings[1] / 2};
 | |
|     int strideShape[2]     = {mStrides[0], mStrides[1]};
 | |
|     int kernelShape[2]     = {mKernels[0], mKernels[1]};
 | |
| 
 | |
|     uint32_t idx   = 0;
 | |
|     mKernel.setArg(idx++, mGlobalWorkSize[0]);
 | |
|     mKernel.setArg(idx++, mGlobalWorkSize[1]);
 | |
|     mKernel.setArg(idx++, mGlobalWorkSize[2]);
 | |
|     mKernel.setArg(idx++, openCLBuffer(input));
 | |
|     mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
 | |
|     mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
 | |
|     mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
 | |
|     mKernel.setArg(idx++, sizeof(strideShape), strideShape);
 | |
|     mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
 | |
|     mKernel.setArg(idx++, openCLBuffer(output));
 | |
|     mKernel.setArg(idx++, channelBlocks);
 | |
|     
 | |
|     std::string kernelNameTune = "pooling_buf";
 | |
|     mLocalWorkSize =
 | |
|     localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelNameTune, mKernel).first;
 | |
| 
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("end PoolBufExecution onResize !\n");
 | |
| #endif
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode PoolBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("start PoolBufExecution onExecute !\n");
 | |
| #endif
 | |
|     
 | |
| #ifdef ENABLE_OPENCL_TIME_PROFILER
 | |
|     cl::Event event;
 | |
|     run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
 | |
|                        mOpenCLBackend->getOpenCLRuntime(), &event);
 | |
|     
 | |
|     int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | |
|     MNN_PRINT("kernel cost:%d    us Pooling\n",costTime);
 | |
| #else
 | |
|     run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
 | |
|                        mOpenCLBackend->getOpenCLRuntime());
 | |
| #endif
 | |
|     
 | |
| #ifdef LOG_VERBOSE
 | |
|     MNN_PRINT("end PoolBufExecution onExecute !\n");
 | |
| #endif
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| OpenCLCreatorRegister<TypedCreator<PoolBufExecution>> __PoolBuf_op(OpType_Pooling, BUFFER);
 | |
| } // namespace OpenCL
 | |
| } // namespace MNN
 | |
| #endif /* MNN_OPENCL_BUFFER_CLOSED */
 |