MNN/source/backend/cpu/CPUMatMul.cpp

240 lines
8.7 KiB
C++

//
// CPUMatMul.cpp
// MNN
//
// Created by MNN on 2018/08/06.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUMatMul.hpp"
#include "CPUBackend.hpp"
#include "math/Matrix.hpp"
#include "compute/CommonOptFunction.h"
#include "core/Macro.h"
#include "core/Concurrency.h"
#include "core/AutoStorage.h"
#include "math/Vec.hpp"
#include <limits>
using Vec4 = MNN::Math::Vec<float, 4>;
namespace MNN {
CPUMatMul::CPUMatMul(Backend* backend, bool transposeA, bool transposeB, bool transposeC, bool multiThread)
: Execution(backend), mTransposeA(transposeA), mTransposeB(transposeB), mTransposeC(transposeC), mSupportMultiThread(multiThread) {
mComputer.reset(new StrassenMatrixComputor(backend, mSupportMultiThread, 5));
}
void CPUMatMul::_scheduleForVecE(int e, int l, int h) {
int numberThread = mSupportMultiThread ? static_cast<CPUBackend*>(backend())->threadNumber() : 1;
MNN_ASSERT(e == 1);
MatMulParam param;
param.e = 1;
param.l = l;
param.h = h;
param.BTranspose = mTransposeB;
param.numberThread = numberThread;
auto func = static_cast<CPUBackend*>(backend())->functions()->MNNComputeMatMulForE_1;
mPostFunctions.emplace_back(std::make_pair([param, func](
int tId, const float* A, const float* B, const float* biasPtr, float* C) {
func(A, B, C, biasPtr, &param, tId);
}, numberThread));
}
void CPUMatMul::_scheduleForVec(int e, int l, int h) {
int numberThread = mSupportMultiThread ? static_cast<CPUBackend*>(backend())->threadNumber() : 1;
MatMulParam param;
param.e = e;
param.l = l;
param.h = 1;
param.ATranspose = mTransposeA;
param.numberThread = numberThread;
auto func = static_cast<CPUBackend*>(backend())->functions()->MNNComputeMatMulForH_1;
// TODD: Support e = 1
MNN_ASSERT(h == 1);
mPostFunctions.emplace_back(std::make_pair([param, func](
int tId, const float* A, const float* B, const float* biasPtr, float* C) {
func(A, B, C, biasPtr, &param, tId);
}, numberThread));
}
ErrorCode CPUMatMul::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const Tensor* A = inputs[0];
const Tensor* B = inputs[1];
Tensor* C = outputs[0];
auto w0 = inputs[0]->length(1);
auto h0 = inputs[0]->length(0);
auto core = static_cast<CPUBackend*>(backend())->functions();
mPreFunctions.clear();
mPostFunctions.clear();
auto e = A->length(0);
auto h = B->length(1);
auto l = A->length(1);
if (mTransposeA) {
l = A->length(0);
e = A->length(1);
}
if (mTransposeB) {
h = B->length(0);
}
// If encoded but resized as h=1/e=1, the computer should clear firstly
mComputer->onReset();
if (h == 1) {
_scheduleForVec(e, l, h);
return NO_ERROR;
}
if (e == 1) {
const float* biasPtr = nullptr;
_scheduleForVecE(e, l, h);
return NO_ERROR;
}
int eP, lP, hP;
core->MNNGetMatMulPackMode(&eP, &lP, &hP);
AutoRelease<Tensor> AT(Tensor::createDevice<float>({UP_DIV(l, core->pack), e, core->pack}));
AutoRelease<Tensor> BT(Tensor::createDevice<float>({UP_DIV(h, hP), UP_DIV(l, lP) * lP, hP}));
AutoRelease<Tensor> CT(Tensor::createDevice<float>({UP_DIV(h, core->pack), e, core->pack}));
auto res = backend()->onAcquireBuffer(BT.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
auto BTPtr = BT->host<float>();
float* BTempPtr = BTPtr;
int numberThread = mSupportMultiThread ? ((CPUBackend*)backend())->threadNumber() : 1;
mPreFunctions.emplace_back(std::make_pair([BTempPtr, l, h, this, core] (int tId, const float* APtr, const float* BPtr, const float* Bias) {
core->MNNPackForMatMul_B(BTempPtr, BPtr, h, l, mTransposeB);
} , 1));
res = backend()->onAcquireBuffer(AT.get(), Backend::DYNAMIC);
res = res && backend()->onAcquireBuffer(CT.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
auto ATPtr = AT->host<float>();
if (mTransposeA) {
// l, e -> lC4, e, 4
mPreFunctions.emplace_back(std::make_pair([ATPtr, e, l, core](int tId, const float* APtr, const float* BPtr, const float* Bias) {
int offset[] = {
e, e
};
core->MNNPackCUnit(ATPtr, APtr, e, l, offset);
}, 1));
} else {
// e, l -> lC4, e, 4
mPreFunctions.emplace_back(std::make_pair(
[ATPtr, e, l, core](int tId, const float* APtr, const float* BPtr, const float* Bias) {
int offset[] = {
e, e
};
core->MNNPackCUnitTranspose(ATPtr, APtr, e, l, offset);
}, 1));
}
AutoRelease<Tensor> biasWrap;
std::vector<Tensor*> strassenInputs = {AT.get(), BT.get()};
std::vector<float> postParameters;
if (inputs.size() > 2) {
auto bias = inputs[2];
auto biasLength = bias->elementSize();
if (biasLength % core->pack != 0) {
mStrassenUseBiasDirectly = false;
// Padding to align of 4
biasWrap.reset(Tensor::createDevice<float>({UP_DIV(biasLength, core->pack) * core->pack}));
res = backend()->onAcquireBuffer(biasWrap.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
auto bdest = biasWrap->host<float>();
mPreFunctions.emplace_back(std::make_pair(
[biasLength, bdest, core](int tId, const float* APtr, const float* BPtr, const float* borigin) {
::memset(bdest, 0, UP_DIV(biasLength, core->pack) * core->bytes * core->pack);
::memcpy(bdest, borigin, biasLength * core->bytes);
}, 1));
strassenInputs.emplace_back(biasWrap.get());
} else {
mStrassenUseBiasDirectly = true;
strassenInputs.emplace_back(bias);
}
postParameters = {
1.0f,
1.0f,
-std::numeric_limits<float>().max(),
std::numeric_limits<float>().max(),
};
}
auto code = mComputer->onEncode(strassenInputs, {CT.get()}, postParameters, l);
if (NO_ERROR != code) {
return code;
}
if (nullptr != biasWrap.get()) {
backend()->onReleaseBuffer(biasWrap.get(), Backend::DYNAMIC);
}
auto CTPtr = CT->host<float>();
// hC4, e, 4 -> e, h
if (mTransposeC) {
mPostFunctions.emplace_back(std::make_pair([CTPtr, e, h, core](
int tId, const float* APtr, const float* BPtr, const float* biasPtr, float* CPtr) {
int offset[] = {
e, e
};
core->MNNUnpackCUnitTranspose(CPtr, CTPtr, e, h, offset);
}, 1));
} else {
mPostFunctions.emplace_back(std::make_pair([CTPtr, e, h, core](
int tId, const float* APtr, const float* BPtr, const float* biasPtr, float* CPtr) {
int offset[] = {
e, e
};
core->MNNUnpackCUnit(CPtr, CTPtr, e, h, offset);
}, 1));
}
backend()->onReleaseBuffer(AT.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(BT.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(CT.get(), Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUMatMul::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto APtr = inputs[0]->host<float>();
auto BPtr = inputs[1]->host<float>();
auto CPtr = outputs[0]->host<float>();
const float* biasPtr = nullptr;
if (inputs.size() > 2) {
biasPtr = inputs[2]->host<float>();
}
execute(APtr, BPtr, CPtr, biasPtr);
return NO_ERROR;
}
void CPUMatMul::execute(const float* APtr, const float* BPtr, float* CPtr, const float* biasPtr) {
for (auto& f : mPreFunctions) {
MNN_CONCURRENCY_BEGIN(tId, f.second) {
f.first(tId, APtr, BPtr, biasPtr);
}
MNN_CONCURRENCY_END();
}
if (mStrassenUseBiasDirectly) {
mComputer->onExecute(nullptr, nullptr, (uint8_t*)biasPtr, nullptr);
} else {
mComputer->onExecute();
}
for (auto& f : mPostFunctions) {
MNN_CONCURRENCY_BEGIN(tId, f.second) {
f.first(tId, APtr, BPtr, biasPtr, CPtr);
}
MNN_CONCURRENCY_END();
}
}
class CPUMatMulCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
auto param = op->main_as_MatMul();
return new CPUMatMul(backend, param->transposeA(), param->transposeB(), true, true);
}
};
REGISTER_CPU_OP_CREATOR(CPUMatMulCreator, OpType_MatMul);
} // namespace MNN