MNN/tools/cpp/backendTest.cpp

287 lines
10 KiB
C++

//
// backendTest.cpp
// MNN
//
// Created by MNN on 2019/01/22.
// Copyright © 2018, Alibaba Group Holding Limited
//
#define MNN_OPEN_TIME_TRACE
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <MNN/AutoTime.hpp>
#include <MNN/Interpreter.hpp>
#include <MNN/Tensor.hpp>
#include "core/TensorUtils.hpp"
#include "rapidjson/document.h"
template<typename T>
inline T stringConvert(const char* number) {
std::istringstream os(number);
T v;
os >> v;
return v;
}
using namespace MNN;
static void _zeroInputs(const Interpreter* net, const Session* session) {
// Set Other Inputs to Zero
auto allInput = net->getSessionInputAll(session);
for (auto& iter : allInput) {
auto inputTensor = iter.second;
auto size = inputTensor->size();
if (size <= 0) {
continue;
}
MNN::Tensor tempTensor(inputTensor, inputTensor->getDimensionType());
::memset(tempTensor.host<void>(), 0, tempTensor.size());
inputTensor->copyFromHostTensor(&tempTensor);
}
}
static void compareForwadType(Interpreter* net, MNNForwardType expectType, MNNForwardType compareType, float tolerance,
const std::map<std::string, std::shared_ptr<Tensor>>& inputs, const std::string& stopOp, BackendConfig::PrecisionMode precision, int modeNum) {
std::vector<std::shared_ptr<MNN::Tensor>> correctResult;
int index;
MNN::ScheduleConfig expectConfig, compareConfig;
BackendConfig backendConfig;
backendConfig.precision = precision;
expectConfig.type = expectType;
compareConfig.type = compareType;
compareConfig.backendConfig = &backendConfig;
compareConfig.mode = modeNum;
auto expectSession = net->createSession(expectConfig);
auto compareSession = net->createSession(compareConfig);
_zeroInputs(net, expectSession);
_zeroInputs(net, compareSession);
bool allCorrect = true;
MNN::TensorCallBackWithInfo beginCallBack = [&](const std::vector<MNN::Tensor*>& t, const OperatorInfo* op) {
if (op->name() == stopOp) {
return false;
}
return true;
};
MNN::TensorCallBackWithInfo saveExpect = [&](const std::vector<MNN::Tensor*>& t, const OperatorInfo* op) {
if (op->name() == stopOp) {
return false;
}
if (op->type() == "Raster") {
return true;
}
for (int i=0; i<t.size(); ++i) {
auto tensor = t[i];
if (tensor->elementSize() <= 0) {
return true;
}
if (tensor->buffer().device == 0 && tensor->buffer().host == nullptr) {
return true;
}
std::shared_ptr<MNN::Tensor> copyTensor(new MNN::Tensor(tensor, tensor->getDimensionType()));
tensor->copyToHostTensor(copyTensor.get());
correctResult.emplace_back(copyTensor);
}
return true;
};
MNN::TensorCallBackWithInfo compareExpect = [&](const std::vector<MNN::Tensor*>& t, const OperatorInfo* op) {
if (op->name() == stopOp) {
return false;
}
if (op->type() == "Raster") {
return true;
}
for (int i=0; i<t.size(); ++i) {
auto tensor = t[i];
if (tensor->elementSize() <= 0) {
return true;
}
if (tensor->buffer().device == 0 && tensor->buffer().host == nullptr) {
return true;
}
tensor->wait(MNN::Tensor::MAP_TENSOR_READ, false);
std::shared_ptr<MNN::Tensor> copyTensor(new MNN::Tensor(tensor, tensor->getDimensionType()));
tensor->copyToHostTensor(copyTensor.get());
auto expectTensor = correctResult[index++];
auto correct = TensorUtils::compareTensors(copyTensor.get(), expectTensor.get(), tolerance, true);
if (!correct) {
MNN_PRINT("%s - %d is error\n", op->name().c_str(), i);
allCorrect = false;
}
}
return allCorrect;
};
for (auto& iter : inputs) {
Tensor* expectInput = net->getSessionInput(expectSession, iter.first.empty() ? NULL : iter.first.c_str());
expectInput->copyFromHostTensor(iter.second.get());
Tensor* compareInput = net->getSessionInput(compareSession, iter.first.empty() ? NULL : iter.first.c_str());
compareInput->copyFromHostTensor(iter.second.get());
}
correctResult.clear();
net->runSessionWithCallBackInfo(expectSession, beginCallBack, saveExpect);
index = 0;
net->runSessionWithCallBackInfo(compareSession, beginCallBack, compareExpect);
if (allCorrect) {
MNN_PRINT("Correct ! Run second pass\n");
} else {
return;
}
_zeroInputs(net, compareSession);
index = 0;
for (auto& iter : inputs) {
Tensor* compareInput = net->getSessionInput(compareSession, iter.first.empty() ? NULL : iter.first.c_str());
compareInput->copyFromHostTensor(iter.second.get());
}
net->runSessionWithCallBackInfo(compareSession, beginCallBack, compareExpect);
if (allCorrect) {
MNN_PRINT("Correct !\n");
}
}
int main(int argc, const char* argv[]) {
// read args
std::string cmd = argv[0];
std::string pwd = "./";
auto rslash = cmd.rfind("/");
if (rslash != std::string::npos) {
pwd = cmd.substr(0, rslash + 1);
}
const char* fileName = argv[1];
auto type = MNN_FORWARD_CPU;
if (argc > 2) {
type = (MNNForwardType)stringConvert<int>(argv[2]);
}
MNN_PRINT("Test forward type: %d\n", type);
float tolerance = 0.05f;
if (argc > 3) {
tolerance = stringConvert<float>(argv[3]);
}
MNN_PRINT("Tolerance Rate: %f\n", tolerance);
// create net
MNN_PRINT("Open Model %s\n", fileName);
std::shared_ptr<MNN::Interpreter> net =
std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(fileName));
net->setSessionMode(Interpreter::Session_Debug);
// create session
ScheduleConfig config;
config.type = MNN_FORWARD_CPU;
auto session = net->createSession(config);
std::map<std::string, std::shared_ptr<MNN::Tensor>> inputs;
std::vector<std::string> inputNames;
do {
rapidjson::Document document;
std::ostringstream jsonNameOs;
jsonNameOs << pwd << "/input.json";
std::ifstream fileNames(jsonNameOs.str().c_str());
if (fileNames.fail()) {
break;
}
std::ostringstream output;
output << fileNames.rdbuf();
auto outputStr = output.str();
document.Parse(outputStr.c_str());
if (document.HasParseError()) {
MNN_ERROR("Invalid json\n");
break;
}
if (document.HasMember("inputs")) {
auto inputsInfo = document["inputs"].GetArray();
for (auto iter = inputsInfo.begin(); iter !=inputsInfo.end(); iter++) {
auto obj = iter->GetObject();
std::string name = obj["name"].GetString();
inputNames.emplace_back(name);
}
}
} while (false);
if (!inputNames.empty()) {
MNN_PRINT("Find input.json, use inputs:");
for (auto& n : inputNames) {
MNN_PRINT(" %s, ", n.c_str());
}
MNN_PRINT("\n");
for (auto name : inputNames) {
auto inputTensor = net->getSessionInput(session, name.c_str());
std::shared_ptr<MNN::Tensor> givenTensor(new Tensor(inputTensor, inputTensor->getDimensionType()));
{
std::ostringstream fileName;
fileName << pwd << name << ".txt";
std::ifstream input(fileName.str().c_str());
MNN_ASSERT(!input.fail());
int size_w = inputTensor->width();
int size_h = inputTensor->height();
int bpp = inputTensor->channel();
int batch = inputTensor->batch();
// auto backend = net->getBackend(session, inputTensor);
// MNN_ASSERT(!input.fail());
MNN_PRINT("Input: %d,%d,%d,%d\n", size_w, size_h, bpp, batch);
auto inputData = givenTensor->host<float>();
auto size = givenTensor->size() / sizeof(float);
for (int i = 0; i < size; ++i) {
input >> inputData[i];
}
inputs.insert(std::make_pair(name, givenTensor));
}
}
} else {
auto inputTensor = net->getSessionInput(session, NULL);
std::shared_ptr<MNN::Tensor> givenTensor(new Tensor(inputTensor, inputTensor->getDimensionType()));
{
std::ostringstream fileName;
fileName << pwd << "input_0"
<< ".txt";
std::ifstream input(fileName.str().c_str());
int size_w = inputTensor->width();
int size_h = inputTensor->height();
int bpp = inputTensor->channel();
int batch = inputTensor->batch();
// auto backend = net->getBackend(session, inputTensor);
// MNN_ASSERT(!input.fail());
MNN_PRINT("Input: %d,%d,%d,%d\n", size_w, size_h, bpp, batch);
auto inputData = givenTensor->host<float>();
auto size = givenTensor->size() / sizeof(float);
for (int i = 0; i < size; ++i) {
input >> inputData[i];
}
inputs.insert(std::make_pair("", givenTensor));
}
}
BackendConfig::PrecisionMode precision = BackendConfig::Precision_Normal;
if (argc > 4) {
precision = (BackendConfig::PrecisionMode)atoi(argv[4]);
}
FUNC_PRINT(precision);
int modeNum = 1;
if(argc > 5) {
modeNum = atoi(argv[5]);//set gpu mode
}
FUNC_PRINT(modeNum);
std::string stopOp = "";
if (argc > 6) {
stopOp = argv[6];
}
FUNC_PRINT_ALL(stopOp.c_str(), s);
net->releaseSession(session);
compareForwadType(net.get(), MNN_FORWARD_CPU, type, tolerance, inputs, stopOp, precision, modeNum);
return 0;
}