mirror of https://github.com/alibaba/MNN.git
136 lines
5.0 KiB
Plaintext
Executable File
136 lines
5.0 KiB
Plaintext
Executable File
//
|
|
// MetalLayerNorm.mm
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2022/06/14.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#import "backend/metal/MetalLayerNorm.hpp"
|
|
#import "backend/metal/MNNMetalContext.h"
|
|
#import "backend/metal/MetalBackend.hpp"
|
|
|
|
#if MNN_METAL_ENABLED
|
|
namespace MNN {
|
|
|
|
MetalLayerNorm::MetalLayerNorm(Backend *backend, const LayerNorm *layernorm)
|
|
: Execution(backend), mGroup(layernorm->group()),
|
|
mEps(layernorm->epsilon()) {
|
|
auto context = (__bridge MNNMetalContext *)static_cast<MetalBackend *>(backend)->context();
|
|
|
|
int axis_size = layernorm->axis()->size();
|
|
mAxis.resize(axis_size);
|
|
for (int i = 0; i < axis_size; ++i) {
|
|
mAxis[i] = layernorm->axis()->Get(i);
|
|
}
|
|
|
|
if (layernorm->gamma() && layernorm->beta()) {
|
|
has_gamma_beta_ = true;
|
|
int gamma_size = layernorm->gamma()->size();
|
|
const float* gamma_data = layernorm->gamma()->data();
|
|
mGammaBuffer =
|
|
[context newDeviceBuffer:gamma_size * sizeof(float) access:CPUWriteOnly];
|
|
|
|
memcpy(mGammaBuffer.contents, (const void *)gamma_data, gamma_size * sizeof(float));
|
|
|
|
if (layernorm->beta()->size() != gamma_size) {
|
|
MNN_ERROR("Size of gamma and beta are not match in MetalLayerNorm.\n");
|
|
}
|
|
|
|
const float* beta_data = layernorm->beta()->data();
|
|
mBetaBuffer =
|
|
[context newDeviceBuffer:gamma_size * sizeof(float) access:CPUWriteOnly];
|
|
memcpy(mBetaBuffer.contents, (const void *)beta_data, gamma_size * sizeof(float));
|
|
}
|
|
}
|
|
|
|
ErrorCode MetalLayerNorm::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto backend = static_cast<MetalBackend *>(this->backend());
|
|
auto context = (__bridge MNNMetalContext *)backend->context();
|
|
|
|
auto input = inputs[0], output = outputs[0];
|
|
|
|
mOutside = 1;
|
|
mInside = 1;
|
|
int rank = input->dimensions();
|
|
if (mGroup > 1) {
|
|
mOutside = input->length(0) * mGroup;
|
|
for (int i = 1; i < rank; i++) {
|
|
mInside *= input->length(i);
|
|
}
|
|
mInside /= mGroup;
|
|
return NO_ERROR;
|
|
}
|
|
std::vector<int> axis(mAxis.size());
|
|
for (int i = 0; i < mAxis.size(); ++i) {
|
|
if (mAxis[i] < 0) {
|
|
mAxis[i] += rank;
|
|
}
|
|
}
|
|
std::sort(mAxis.begin(), mAxis.end());
|
|
|
|
for (int i = 0; i < rank - axis.size(); ++i) {
|
|
mOutside *= input->length(i);
|
|
}
|
|
for (int i = rank - axis.size(); i < rank; ++i) {
|
|
mInside *= input->length(i);
|
|
}
|
|
|
|
mShapeBuffer = [context newDeviceBuffer:3 * sizeof(int) + sizeof(float) access:CPUWriteOnly];
|
|
((int *)mShapeBuffer.contents)[0] = mInside;
|
|
((int *)mShapeBuffer.contents)[1] = mOutside;
|
|
((float *)mShapeBuffer.contents)[2] = mEps;
|
|
((int *)mShapeBuffer.contents)[3] = (int)has_gamma_beta_;
|
|
|
|
|
|
bool parallel = (mInside > 32) && ((mInside & 3) == 0);
|
|
mPipeline = [context pipelineWithName:parallel ? @"layernorm_x4" : @"layernorm_x1"];
|
|
|
|
auto inside = parallel ? mInside/4 : mInside;
|
|
mThreads = [context computeBestGroupAndLocal:mPipeline threads:MTLSizeMake((NSUInteger)inside, (NSUInteger)mOutside, 1)];
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode MetalLayerNorm::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto backend = static_cast<MetalBackend *>(this->backend());
|
|
auto context = (__bridge MNNMetalContext *)backend->context();
|
|
|
|
if(backend->isCommandEncoderSet()) {
|
|
return NO_ERROR;
|
|
}
|
|
|
|
auto func = [=](){
|
|
auto input = inputs[0], output = outputs[0];
|
|
|
|
auto encoder = backend->encoder();
|
|
[encoder setComputePipelineState:mPipeline];
|
|
[encoder setBuffer:(id<MTLBuffer>)((MetalRuntimeAllocator::MetalBufferAlloc *)input->deviceId())->getBuffer() offset:TensorUtils::getDescribe(input)->extra.offset atIndex:0];
|
|
[encoder setBuffer:(id<MTLBuffer>)((MetalRuntimeAllocator::MetalBufferAlloc *)output->deviceId())->getBuffer() offset:TensorUtils::getDescribe(output)->extra.offset atIndex:1];
|
|
[encoder setBuffer:mShapeBuffer offset:0 atIndex:2];
|
|
[encoder setBuffer:mGammaBuffer offset:0 atIndex:3];
|
|
[encoder setBuffer:mBetaBuffer offset:0 atIndex:4];
|
|
|
|
[encoder dispatchThreadgroups:mThreads.first threadsPerThreadgroup:mThreads.second];
|
|
MNN_PRINT_ENCODER(context, encoder);
|
|
|
|
auto context = (__bridge MNNMetalContext *)backend->context();
|
|
if(backend->isCmdBufferCommit()) {
|
|
backend->flushEncoder();
|
|
[context commit_net];
|
|
}
|
|
};
|
|
func();
|
|
backend->addOpEncoder(func);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class MetalLayerNormCreator : public MetalBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend, const std::vector<Tensor *> &outputs) const {
|
|
return new MetalLayerNorm(backend, op->main_as_LayerNorm());
|
|
}
|
|
};
|
|
REGISTER_METAL_OP_CREATOR(MetalLayerNormCreator, OpType_LayerNorm);
|
|
} // namespace MNN
|
|
#endif /* MNN_METAL_ENABLED */
|