MNN/source/backend/metal/MetalLayerNorm.mm

136 lines
5.0 KiB
Plaintext
Executable File

//
// MetalLayerNorm.mm
// MNN
//
// Created by MNN on 2022/06/14.
// Copyright © 2018, Alibaba Group Holding Limited
//
#import "backend/metal/MetalLayerNorm.hpp"
#import "backend/metal/MNNMetalContext.h"
#import "backend/metal/MetalBackend.hpp"
#if MNN_METAL_ENABLED
namespace MNN {
MetalLayerNorm::MetalLayerNorm(Backend *backend, const LayerNorm *layernorm)
: Execution(backend), mGroup(layernorm->group()),
mEps(layernorm->epsilon()) {
auto context = (__bridge MNNMetalContext *)static_cast<MetalBackend *>(backend)->context();
int axis_size = layernorm->axis()->size();
mAxis.resize(axis_size);
for (int i = 0; i < axis_size; ++i) {
mAxis[i] = layernorm->axis()->Get(i);
}
if (layernorm->gamma() && layernorm->beta()) {
has_gamma_beta_ = true;
int gamma_size = layernorm->gamma()->size();
const float* gamma_data = layernorm->gamma()->data();
mGammaBuffer =
[context newDeviceBuffer:gamma_size * sizeof(float) access:CPUWriteOnly];
memcpy(mGammaBuffer.contents, (const void *)gamma_data, gamma_size * sizeof(float));
if (layernorm->beta()->size() != gamma_size) {
MNN_ERROR("Size of gamma and beta are not match in MetalLayerNorm.\n");
}
const float* beta_data = layernorm->beta()->data();
mBetaBuffer =
[context newDeviceBuffer:gamma_size * sizeof(float) access:CPUWriteOnly];
memcpy(mBetaBuffer.contents, (const void *)beta_data, gamma_size * sizeof(float));
}
}
ErrorCode MetalLayerNorm::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto backend = static_cast<MetalBackend *>(this->backend());
auto context = (__bridge MNNMetalContext *)backend->context();
auto input = inputs[0], output = outputs[0];
mOutside = 1;
mInside = 1;
int rank = input->dimensions();
if (mGroup > 1) {
mOutside = input->length(0) * mGroup;
for (int i = 1; i < rank; i++) {
mInside *= input->length(i);
}
mInside /= mGroup;
return NO_ERROR;
}
std::vector<int> axis(mAxis.size());
for (int i = 0; i < mAxis.size(); ++i) {
if (mAxis[i] < 0) {
mAxis[i] += rank;
}
}
std::sort(mAxis.begin(), mAxis.end());
for (int i = 0; i < rank - axis.size(); ++i) {
mOutside *= input->length(i);
}
for (int i = rank - axis.size(); i < rank; ++i) {
mInside *= input->length(i);
}
mShapeBuffer = [context newDeviceBuffer:3 * sizeof(int) + sizeof(float) access:CPUWriteOnly];
((int *)mShapeBuffer.contents)[0] = mInside;
((int *)mShapeBuffer.contents)[1] = mOutside;
((float *)mShapeBuffer.contents)[2] = mEps;
((int *)mShapeBuffer.contents)[3] = (int)has_gamma_beta_;
bool parallel = (mInside > 32) && ((mInside & 3) == 0);
mPipeline = [context pipelineWithName:parallel ? @"layernorm_x4" : @"layernorm_x1"];
auto inside = parallel ? mInside/4 : mInside;
mThreads = [context computeBestGroupAndLocal:mPipeline threads:MTLSizeMake((NSUInteger)inside, (NSUInteger)mOutside, 1)];
return NO_ERROR;
}
ErrorCode MetalLayerNorm::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto backend = static_cast<MetalBackend *>(this->backend());
auto context = (__bridge MNNMetalContext *)backend->context();
if(backend->isCommandEncoderSet()) {
return NO_ERROR;
}
auto func = [=](){
auto input = inputs[0], output = outputs[0];
auto encoder = backend->encoder();
[encoder setComputePipelineState:mPipeline];
[encoder setBuffer:(id<MTLBuffer>)((MetalRuntimeAllocator::MetalBufferAlloc *)input->deviceId())->getBuffer() offset:TensorUtils::getDescribe(input)->extra.offset atIndex:0];
[encoder setBuffer:(id<MTLBuffer>)((MetalRuntimeAllocator::MetalBufferAlloc *)output->deviceId())->getBuffer() offset:TensorUtils::getDescribe(output)->extra.offset atIndex:1];
[encoder setBuffer:mShapeBuffer offset:0 atIndex:2];
[encoder setBuffer:mGammaBuffer offset:0 atIndex:3];
[encoder setBuffer:mBetaBuffer offset:0 atIndex:4];
[encoder dispatchThreadgroups:mThreads.first threadsPerThreadgroup:mThreads.second];
MNN_PRINT_ENCODER(context, encoder);
auto context = (__bridge MNNMetalContext *)backend->context();
if(backend->isCmdBufferCommit()) {
backend->flushEncoder();
[context commit_net];
}
};
func();
backend->addOpEncoder(func);
return NO_ERROR;
}
class MetalLayerNormCreator : public MetalBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend, const std::vector<Tensor *> &outputs) const {
return new MetalLayerNorm(backend, op->main_as_LayerNorm());
}
};
REGISTER_METAL_OP_CREATOR(MetalLayerNormCreator, OpType_LayerNorm);
} // namespace MNN
#endif /* MNN_METAL_ENABLED */