mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  CPUOneHot.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/11/29.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "backend/cpu/CPUOneHot.hpp"
 | 
						|
#include "backend/cpu/CPUBackend.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void OneHotImpl(int depth, int outerSize, int innerSize, const int* indices, const Tensor* onValueTensor,
 | 
						|
                const Tensor* offValueTensor, Tensor* outputTensor) {
 | 
						|
    const T onValue  = onValueTensor->host<T>()[0];
 | 
						|
    const T offValue = offValueTensor->host<T>()[0];
 | 
						|
    T* outputPtr     = outputTensor->host<T>();
 | 
						|
 | 
						|
    for (int i = 0; i < outerSize; ++i) {
 | 
						|
        for (int j = 0; j < depth; ++j) {
 | 
						|
            for (int k = 0; k < innerSize; ++k) {
 | 
						|
                auto index = indices[i * innerSize + k];
 | 
						|
                if (index == j) {
 | 
						|
                    *outputPtr = onValue;
 | 
						|
                } else {
 | 
						|
                    *outputPtr = offValue;
 | 
						|
                }
 | 
						|
                outputPtr++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode CPUOneHot::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | 
						|
    auto indices        = inputs[0];
 | 
						|
    auto depthTensor    = inputs[1];
 | 
						|
    auto onValueTensor  = inputs[2];
 | 
						|
    auto offValueTensor = inputs[3];
 | 
						|
 | 
						|
    int axis = mAxis;
 | 
						|
    if (axis < 0) {
 | 
						|
        axis += outputs[0]->dimensions();
 | 
						|
    }
 | 
						|
    int outerSize = 1;
 | 
						|
    for (int i = 0; i < axis; ++i) {
 | 
						|
        outerSize *= indices->length(i);
 | 
						|
    }
 | 
						|
    const int depth       = depthTensor->host<int>()[0];
 | 
						|
    const int innerSize   = indices->elementSize() / outerSize;
 | 
						|
    const auto indicesPtr = indices->host<int>();
 | 
						|
 | 
						|
    auto dataType    = onValueTensor->getType();
 | 
						|
    MNN_ASSERT(offValueTensor->getType() == dataType);
 | 
						|
 | 
						|
    if (dataType == halide_type_of<float>()) {
 | 
						|
        OneHotImpl<float>(depth, outerSize, innerSize, indicesPtr, onValueTensor, offValueTensor, outputs[0]);
 | 
						|
    } else if (dataType == halide_type_of<int>()) {
 | 
						|
        OneHotImpl<int>(depth, outerSize, innerSize, indicesPtr, onValueTensor, offValueTensor, outputs[0]);
 | 
						|
    } else {
 | 
						|
        return NOT_SUPPORT;
 | 
						|
    }
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
class CPUOneHotCreator : public CPUBackend::Creator {
 | 
						|
public:
 | 
						|
    virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | 
						|
                                const MNN::Op* op, Backend* backend) const override {
 | 
						|
        return new CPUOneHot(backend, op->main_as_OneHotParam()->axis());
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_CPU_OP_CREATOR(CPUOneHotCreator, OpType_OneHot);
 | 
						|
 | 
						|
} // namespace MNN
 |