MNN/source/backend/cpu/CPUDequantize.cpp

142 lines
5.9 KiB
C++

//
// CPUDequantize.cpp
// MNN
//
// Created by MNN on 2018/08/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUDequantize.hpp"
#include <math.h>
#include "backend/cpu/CPUBackend.hpp"
#include "core/Macro.h"
#define UNIT 4
#define TILE 2
extern "C" {
void dequantizeMinFirst(uint8_t* input, float* output, float* rangeScale, float* resultAdd, size_t lengthUnit) {
for (int i = 0; i < lengthUnit; i++) {
for (int m = 0; m < TILE; m++) {
for (int j = 0; j < UNIT; j++) {
output[i * UNIT * TILE + m * UNIT + j] =
(float)input[i * UNIT * TILE + m * UNIT + j] * (*rangeScale) + (*resultAdd);
}
}
}
}
}
namespace MNN {
template <typename T>
CPUDequantize<T>::CPUDequantize(Backend* backend, QuantizeMode mode, const Op* op) : Execution(backend), mMode(mode) {
auto param = op->main_as_Dequantize();
mIsLiteDequantize = param->modelFormat() == ModeFormat_TFLITE;
mZeroPoint = param->inputQuantizedParam()->zeroPoint();
mScale = param->inputQuantizedParam()->scale();
mHalfRange = !std::is_signed<T>::value ? 0.0f
: (static_cast<double>(std::numeric_limits<T>::max()) -
static_cast<double>(std::numeric_limits<T>::min()) + 1) /
2.0f;
}
template <typename T>
ErrorCode CPUDequantize<T>::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
T* src = (T*)input->host<T>();
auto dest = output->host<float>();
if(mIsLiteDequantize){
const int elements = input->elementSize();
for(int i = 0; i < elements; ++i){
dest[i] = mScale * (static_cast<int32_t>(src[i]) - mZeroPoint);
}
return NO_ERROR;
}
const float minRange = inputs[1]->host<float>()[0];
const float maxRange = inputs[2]->host<float>()[0];
int length = 1;
for (int i = 0; i < input->buffer().dimensions; i++) {
length *= input->buffer().dim[i].extent;
}
if (mMode == QuantizeMode_MIN_COMBINED) {
const float scaleFactor = (maxRange - minRange) / (static_cast<double>(std::numeric_limits<T>::max()) -
static_cast<double>(std::numeric_limits<T>::min()));
for (int i = 0; i < length; i++) {
dest[i] = ((static_cast<int>(src[i]) + mHalfRange) * scaleFactor) + minRange;
}
} else if (mMode == QuantizeMode_MIN_FIRST) {
if (std::is_same<T, uint8_t>::value) {
constexpr int numberOfBits = sizeof(T) * 8;
constexpr int64_t numberOfSteps = static_cast<int64_t>(1) << numberOfBits;
float rangeScale = (maxRange - minRange) / (numberOfSteps - 1.0);
float rangeMinRounded = maxRange == minRange ? minRange : round(minRange / rangeScale) * rangeScale;
float lowestQuantized = static_cast<float>(std::numeric_limits<T>::lowest());
float resultAdd = (rangeMinRounded - lowestQuantized * rangeScale);
int32_t lengthUnit = length / (UNIT * TILE);
int32_t remain = length - (lengthUnit * UNIT * TILE);
dequantizeMinFirst((uint8_t*)src, (float*)dest, &rangeScale, &resultAdd, lengthUnit);
if (remain > 0) {
int32_t currentIndex = lengthUnit * UNIT * TILE;
for (int i = 0; i < remain; i++) {
dest[currentIndex + i] = (float)src[i] * rangeScale + resultAdd;
}
}
} else {
constexpr int numberOfBits = sizeof(T) * 8;
constexpr int64_t numberOfSteps = static_cast<int64_t>(1) << numberOfBits;
float rangeScale = (maxRange - minRange) / (numberOfSteps - 1.0);
float rangeMinRounded = maxRange == minRange ? minRange : round(minRange / rangeScale) * rangeScale;
float lowestQuantized = static_cast<float>(std::numeric_limits<T>::lowest());
float resultAdd = (rangeMinRounded - lowestQuantized * rangeScale);
for (int i = 0; i < length; i++) {
dest[i] = (float)src[i] * rangeScale + resultAdd;
}
}
} else if (mMode == QuantizeMode_SCALED) {
const float scaleFactor =
std::numeric_limits<T>::min() == 0
? (maxRange / std::numeric_limits<T>::max())
: std::max(minRange / std::numeric_limits<T>::min(), maxRange / std::numeric_limits<T>::max());
for (int i = 0; i < length; i++) {
dest[i] = static_cast<int>(src[i]) * scaleFactor;
}
}
return NO_ERROR;
}
class CPUDequantizeCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
auto dequantize = op->main_as_Dequantize();
switch (dequantize->type()) {
case DataType_DT_QUINT8:
return new CPUDequantize<uint8_t>(backend, dequantize->mode(), op);
case DataType_DT_QUINT16:
return new CPUDequantize<uint16_t>(backend, dequantize->mode(), op);
case DataType_DT_QINT8:
return new CPUDequantize<int8_t>(backend, dequantize->mode(), op);
case DataType_DT_QINT16:
return new CPUDequantize<int16_t>(backend, dequantize->mode(), op);
case DataType_DT_QINT32:
return new CPUDequantize<int32_t>(backend, dequantize->mode(), op);
default:
MNN_ASSERT(false); // unsupported type
return nullptr;
}
}
};
REGISTER_CPU_OP_CREATOR(CPUDequantizeCreator, OpType_Dequantize);
} // namespace MNN