mirror of https://github.com/alibaba/MNN.git
142 lines
5.9 KiB
C++
142 lines
5.9 KiB
C++
//
|
|
// CPUDequantize.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/08/02.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUDequantize.hpp"
|
|
#include <math.h>
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "core/Macro.h"
|
|
|
|
#define UNIT 4
|
|
#define TILE 2
|
|
|
|
extern "C" {
|
|
void dequantizeMinFirst(uint8_t* input, float* output, float* rangeScale, float* resultAdd, size_t lengthUnit) {
|
|
for (int i = 0; i < lengthUnit; i++) {
|
|
for (int m = 0; m < TILE; m++) {
|
|
for (int j = 0; j < UNIT; j++) {
|
|
output[i * UNIT * TILE + m * UNIT + j] =
|
|
(float)input[i * UNIT * TILE + m * UNIT + j] * (*rangeScale) + (*resultAdd);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace MNN {
|
|
|
|
template <typename T>
|
|
CPUDequantize<T>::CPUDequantize(Backend* backend, QuantizeMode mode, const Op* op) : Execution(backend), mMode(mode) {
|
|
auto param = op->main_as_Dequantize();
|
|
mIsLiteDequantize = param->modelFormat() == ModeFormat_TFLITE;
|
|
mZeroPoint = param->inputQuantizedParam()->zeroPoint();
|
|
mScale = param->inputQuantizedParam()->scale();
|
|
mHalfRange = !std::is_signed<T>::value ? 0.0f
|
|
: (static_cast<double>(std::numeric_limits<T>::max()) -
|
|
static_cast<double>(std::numeric_limits<T>::min()) + 1) /
|
|
2.0f;
|
|
}
|
|
|
|
template <typename T>
|
|
ErrorCode CPUDequantize<T>::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
|
|
T* src = (T*)input->host<T>();
|
|
auto dest = output->host<float>();
|
|
|
|
if(mIsLiteDequantize){
|
|
const int elements = input->elementSize();
|
|
|
|
for(int i = 0; i < elements; ++i){
|
|
dest[i] = mScale * (static_cast<int32_t>(src[i]) - mZeroPoint);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
const float minRange = inputs[1]->host<float>()[0];
|
|
const float maxRange = inputs[2]->host<float>()[0];
|
|
|
|
int length = 1;
|
|
for (int i = 0; i < input->buffer().dimensions; i++) {
|
|
length *= input->buffer().dim[i].extent;
|
|
}
|
|
|
|
if (mMode == QuantizeMode_MIN_COMBINED) {
|
|
const float scaleFactor = (maxRange - minRange) / (static_cast<double>(std::numeric_limits<T>::max()) -
|
|
static_cast<double>(std::numeric_limits<T>::min()));
|
|
for (int i = 0; i < length; i++) {
|
|
dest[i] = ((static_cast<int>(src[i]) + mHalfRange) * scaleFactor) + minRange;
|
|
}
|
|
} else if (mMode == QuantizeMode_MIN_FIRST) {
|
|
if (std::is_same<T, uint8_t>::value) {
|
|
constexpr int numberOfBits = sizeof(T) * 8;
|
|
constexpr int64_t numberOfSteps = static_cast<int64_t>(1) << numberOfBits;
|
|
float rangeScale = (maxRange - minRange) / (numberOfSteps - 1.0);
|
|
float rangeMinRounded = maxRange == minRange ? minRange : round(minRange / rangeScale) * rangeScale;
|
|
float lowestQuantized = static_cast<float>(std::numeric_limits<T>::lowest());
|
|
float resultAdd = (rangeMinRounded - lowestQuantized * rangeScale);
|
|
|
|
int32_t lengthUnit = length / (UNIT * TILE);
|
|
int32_t remain = length - (lengthUnit * UNIT * TILE);
|
|
dequantizeMinFirst((uint8_t*)src, (float*)dest, &rangeScale, &resultAdd, lengthUnit);
|
|
if (remain > 0) {
|
|
int32_t currentIndex = lengthUnit * UNIT * TILE;
|
|
for (int i = 0; i < remain; i++) {
|
|
dest[currentIndex + i] = (float)src[i] * rangeScale + resultAdd;
|
|
}
|
|
}
|
|
} else {
|
|
constexpr int numberOfBits = sizeof(T) * 8;
|
|
constexpr int64_t numberOfSteps = static_cast<int64_t>(1) << numberOfBits;
|
|
float rangeScale = (maxRange - minRange) / (numberOfSteps - 1.0);
|
|
float rangeMinRounded = maxRange == minRange ? minRange : round(minRange / rangeScale) * rangeScale;
|
|
float lowestQuantized = static_cast<float>(std::numeric_limits<T>::lowest());
|
|
float resultAdd = (rangeMinRounded - lowestQuantized * rangeScale);
|
|
for (int i = 0; i < length; i++) {
|
|
dest[i] = (float)src[i] * rangeScale + resultAdd;
|
|
}
|
|
}
|
|
} else if (mMode == QuantizeMode_SCALED) {
|
|
const float scaleFactor =
|
|
std::numeric_limits<T>::min() == 0
|
|
? (maxRange / std::numeric_limits<T>::max())
|
|
: std::max(minRange / std::numeric_limits<T>::min(), maxRange / std::numeric_limits<T>::max());
|
|
for (int i = 0; i < length; i++) {
|
|
dest[i] = static_cast<int>(src[i]) * scaleFactor;
|
|
}
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUDequantizeCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const {
|
|
auto dequantize = op->main_as_Dequantize();
|
|
switch (dequantize->type()) {
|
|
case DataType_DT_QUINT8:
|
|
return new CPUDequantize<uint8_t>(backend, dequantize->mode(), op);
|
|
case DataType_DT_QUINT16:
|
|
return new CPUDequantize<uint16_t>(backend, dequantize->mode(), op);
|
|
case DataType_DT_QINT8:
|
|
return new CPUDequantize<int8_t>(backend, dequantize->mode(), op);
|
|
case DataType_DT_QINT16:
|
|
return new CPUDequantize<int16_t>(backend, dequantize->mode(), op);
|
|
case DataType_DT_QINT32:
|
|
return new CPUDequantize<int32_t>(backend, dequantize->mode(), op);
|
|
default:
|
|
MNN_ASSERT(false); // unsupported type
|
|
return nullptr;
|
|
}
|
|
}
|
|
};
|
|
REGISTER_CPU_OP_CREATOR(CPUDequantizeCreator, OpType_Dequantize);
|
|
|
|
} // namespace MNN
|