mirror of https://github.com/alibaba/MNN.git
168 lines
6.5 KiB
C++
168 lines
6.5 KiB
C++
//
|
|
// CPUQuantizedSoftmax.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/09/29.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#ifdef MNN_SUPPORT_DEPRECATED_OP
|
|
#if defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
#endif
|
|
#include "backend/cpu/CPUQuantizedSoftmax.hpp"
|
|
#include "backend/cpu/CPUFixedPoint.hpp"
|
|
#include "backend/cpu/CPUQuantizationUtils.hpp"
|
|
#include "core/Macro.h"
|
|
|
|
namespace MNN {
|
|
|
|
template <typename T>
|
|
CPUQuantizedSoftmax<T>::CPUQuantizedSoftmax(Backend* backend, const Op* op) : Execution(backend) {
|
|
auto quantizedSoftmax_param = op->main_as_QuantizedSoftmax();
|
|
mBeta = quantizedSoftmax_param->beta();
|
|
mInputScale = quantizedSoftmax_param->inputScale();
|
|
}
|
|
|
|
const int kScaledDiffIntegerBits = 5;
|
|
const int kAccumulationIntegerBits = 12;
|
|
|
|
template <typename T>
|
|
ErrorCode CPUQuantizedSoftmax<T>::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
float beta = mBeta;
|
|
float scale = mInputScale;
|
|
PreprocessSoftmaxScaling(beta, scale, kScaledDiffIntegerBits, &mInputMultiplier, &mInputLeftShift);
|
|
mDiffMin = -1.0 * CalculateInputRadius(kScaledDiffIntegerBits, mInputLeftShift);
|
|
|
|
Tensor* input = inputs[0];
|
|
Tensor* output = outputs[0];
|
|
|
|
MNN_ASSERT(2 == input->buffer().dimensions || 4 == input->buffer().dimensions);
|
|
|
|
mInputDims.clear();
|
|
mOutputDims.clear();
|
|
if (4 == input->buffer().dimensions) {
|
|
for (int i = 0; i < input->buffer().dimensions; i++) {
|
|
mInputDims.push_back(input->buffer().dim[i].extent);
|
|
}
|
|
for (int i = 0; i < output->buffer().dimensions; i++) {
|
|
mOutputDims.push_back(output->buffer().dim[i].extent);
|
|
}
|
|
} else {
|
|
mInputDims.push_back(input->buffer().dim[0].extent);
|
|
mInputDims.push_back(1);
|
|
mInputDims.push_back(1);
|
|
mInputDims.push_back(input->buffer().dim[1].extent);
|
|
|
|
mOutputDims.push_back(input->buffer().dim[0].extent);
|
|
mOutputDims.push_back(1);
|
|
mOutputDims.push_back(1);
|
|
mOutputDims.push_back(input->buffer().dim[1].extent);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
template <typename T>
|
|
void CPUQuantizedSoftmax<T>::QuantizedSoftmax(const uint8_t* inputData, const std::vector<int>& inputDims,
|
|
int32_t inputBetaMultiplier, int32_t inputBetaLeftShift,
|
|
uint8_t* outputData, const std::vector<int>& outputDims) {
|
|
using FixedPointScaledDiff = FixedPoint<int, kScaledDiffIntegerBits>;
|
|
using FixedPointAccum = FixedPoint<int, kAccumulationIntegerBits>;
|
|
using FixedPoint0 = FixedPoint<int, 0>;
|
|
|
|
const int outerSize = inputDims.at(0) * inputDims.at(1) * inputDims.at(2);
|
|
const int depth = inputDims.at(3);
|
|
|
|
for (int b = 0; b < outerSize; ++b) {
|
|
const uint8_t* inputDataPtr = inputData + b * depth;
|
|
uint8_t* outputDataPtr = outputData + b * depth;
|
|
|
|
// Determine the largest entry in the current row
|
|
uint8_t maxInRow = 0;
|
|
{
|
|
int c = 0;
|
|
for (; c < depth; ++c) {
|
|
maxInRow = std::max(maxInRow, inputDataPtr[c]);
|
|
}
|
|
}
|
|
|
|
FixedPointAccum sumOfExps = FixedPointAccum::Zero();
|
|
{
|
|
int c = 0;
|
|
for (; c < depth; ++c) {
|
|
int32_t inputDiff = static_cast<int32_t>(inputDataPtr[c]) - maxInRow;
|
|
if (inputDiff >= mDiffMin) {
|
|
const int32_t inputDiffRescaled =
|
|
MultiplyByQuantizedMultiplierGreaterThanOne(inputDiff, inputBetaMultiplier, inputBetaLeftShift);
|
|
const FixedPointScaledDiff scaledDiffF8 = FixedPointScaledDiff::FromRaw(inputDiffRescaled);
|
|
sumOfExps = sumOfExps + Rescale<kAccumulationIntegerBits>(exp_on_negative_values(scaledDiffF8));
|
|
}
|
|
}
|
|
}
|
|
|
|
int fixedSumOfExps = sumOfExps.raw();
|
|
#if defined(_MSC_VER)
|
|
int headroomPlusOne;
|
|
{
|
|
unsigned long leading_zero = 0;
|
|
if (_BitScanReverse(&leading_zero, static_cast<uint32_t>(fixedSumOfExps))) {
|
|
headroomPlusOne = 31 - leading_zero;
|
|
} else {
|
|
headroomPlusOne = 31;
|
|
}
|
|
}
|
|
#else
|
|
int headroomPlusOne = __builtin_clz(static_cast<uint32_t>(fixedSumOfExps));
|
|
#endif
|
|
|
|
int numBitsOverUnit = kAccumulationIntegerBits - headroomPlusOne;
|
|
int32_t shiftedSumMinusOne = static_cast<int32_t>((static_cast<uint32_t>(fixedSumOfExps) << headroomPlusOne) -
|
|
(static_cast<uint32_t>(1) << 31));
|
|
FixedPoint0 shiftedScale = one_over_one_plus_x_for_x_in_0_1(FixedPoint0::FromRaw(shiftedSumMinusOne));
|
|
|
|
{
|
|
int c = 0;
|
|
for (; c < depth; ++c) {
|
|
int32_t inputDiff = static_cast<int32_t>(inputDataPtr[c]) - maxInRow;
|
|
if (inputDiff >= mDiffMin) {
|
|
const int inputDiffRescaled =
|
|
MultiplyByQuantizedMultiplierGreaterThanOne(inputDiff, inputBetaMultiplier, inputBetaLeftShift);
|
|
const FixedPointScaledDiff scaledDiffF8 = FixedPointScaledDiff::FromRaw(inputDiffRescaled);
|
|
FixedPoint0 expIn0 = exp_on_negative_values(scaledDiffF8);
|
|
int unsatOutput = RoundingDivideByPOT((shiftedScale * expIn0).raw(), numBitsOverUnit + 31 - 8);
|
|
outputDataPtr[c] = std::max(std::min(unsatOutput, 255), 0);
|
|
} else {
|
|
outputDataPtr[c] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
ErrorCode CPUQuantizedSoftmax<T>::onExecute(const std::vector<MNN::Tensor*>& inputs,
|
|
const std::vector<MNN::Tensor*>& outputs) {
|
|
Tensor* input = inputs[0];
|
|
Tensor* output = outputs[0];
|
|
uint8_t* inputData = input->host<uint8_t>();
|
|
uint8_t* outputData = output->host<uint8_t>();
|
|
|
|
QuantizedSoftmax(inputData, mInputDims, mInputMultiplier, mInputLeftShift, outputData, mOutputDims);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUQuantizedSoftmaxCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const {
|
|
return new CPUQuantizedSoftmax<uint8_t>(backend, op);
|
|
}
|
|
};
|
|
} // namespace MNN
|
|
#endif
|
|
namespace MNN {
|
|
REGISTER_CPU_OP_CREATOR_OLD(CPUQuantizedSoftmaxCreator, OpType_QuantizedSoftmax);
|
|
}
|