mirror of https://github.com/alibaba/MNN.git
202 lines
9.6 KiB
C++
202 lines
9.6 KiB
C++
//
|
|
// CPUROIPooling.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/07/19.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUROIPooling.hpp"
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include "CPUTensorConvert.hpp"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
|
|
CPUROIPooling::CPUROIPooling(Backend *backend, int pooledWidth, int pooledHeight, float spatialScale, bool outputGrad)
|
|
: CPUROIAlign(backend, pooledWidth, pooledHeight, 0, spatialScale, false, PoolType_MAX, outputGrad) {
|
|
// nothing to do
|
|
}
|
|
|
|
static inline int max(int a, int b) { return a > b ? a : b; }
|
|
static inline int min(int a, int b) { return a < b ? a : b; }
|
|
|
|
ErrorCode CPUROIPooling::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto &input = inputs[0];
|
|
auto &output = outputs[0];
|
|
auto core = static_cast<CPUBackend*>(backend())->functions();
|
|
|
|
CPUTensorConverter::convert(inputs[1], &mROI, core);
|
|
|
|
// dataType of ROI must be float32.
|
|
Tensor *roiTensor = &mROI;
|
|
auto roiPtrSrc = roiTensor->host<float>();
|
|
if (core->bytes != 4) {
|
|
core->MNNLowpToFp32(mROI.host<int16_t>(), mROITemp->host<float>(), mROI.elementSize());
|
|
roiPtrSrc = mROITemp->host<float>();
|
|
}
|
|
|
|
if (mOutputGrad == false) {
|
|
// get params
|
|
auto iw = input->width(), ih = input->height(), is = iw * ih * core->pack;
|
|
auto ow = output->width(), oh = output->height(), os = ow * oh * core->pack;
|
|
auto slice = UP_DIV(input->channel(), core->pack);
|
|
auto numROI = inputs[1]->batch();
|
|
for (int n = 0; n < numROI; ++n) {
|
|
auto batchOutput = output->host<uint8_t>() + os * n * core->bytes;
|
|
auto roiPtr = roiPtrSrc + roiTensor->buffer().dim[0].stride * n;
|
|
int roi = roiPtr[0];
|
|
int x1 = round(roiPtr[1] * mSpatialScale);
|
|
int y1 = round(roiPtr[2] * mSpatialScale);
|
|
int x2 = round(roiPtr[3] * mSpatialScale);
|
|
int y2 = round(roiPtr[4] * mSpatialScale);
|
|
MNN_ASSERT(roi < input->batch());
|
|
|
|
int roiW = max(x2 - x1 + 1, 1);
|
|
int roiH = max(y2 - y1 + 1, 1);
|
|
|
|
float binSizeW = (float)roiW / (float)mPooledWidth;
|
|
float binSizeH = (float)roiH / (float)mPooledHeight;
|
|
|
|
auto batchInput = input->host<uint8_t>() + is * roi * core->bytes;
|
|
for (int s = 0; s < slice; s++) {
|
|
auto sliceInput = batchInput + is * input->batch() * s * core->bytes;
|
|
auto rowOutput = batchOutput + os * output->batch() * s * core->bytes;
|
|
float binPh = 0;
|
|
for (int ph = 0; ph < mPooledHeight; ph++, rowOutput += mPooledWidth * core->pack * core->bytes) {
|
|
// Compute pooling region for this output unit:
|
|
// start (included) = floor(ph * roiHeight / pooledHeight)
|
|
// end (excluded) = ceil((ph + 1) * roiHeight / pooledHeight)
|
|
int hStart = min(max(y1 + (int)floorf(binPh), 0), ih);
|
|
binPh += binSizeH;
|
|
int hEnd = min(max(y1 + (int)ceilf(binPh), 0), ih);
|
|
int hLen = hEnd - hStart;
|
|
if (hLen <= 0) {
|
|
memset(rowOutput, 0, mPooledWidth * core->pack * core->bytes * sizeof(uint8_t));
|
|
continue;
|
|
}
|
|
|
|
float binPw = 0;
|
|
for (int pw = 0; pw < mPooledWidth; pw++) {
|
|
int wStart = min(max(x1 + (int)floorf(binPw), 0), iw);
|
|
binPw += binSizeW;
|
|
int wEnd = min(max(x1 + (int)ceilf(binPw), 0), iw);
|
|
int wLen = wEnd - wStart;
|
|
if (wLen <= 0) {
|
|
memset(rowOutput + pw * core->pack * core->bytes, 0, core->pack * core->bytes * sizeof(uint8_t));
|
|
continue;
|
|
}
|
|
core->MNNRoiPoolingMax((float *)(rowOutput + pw * core->pack * core->bytes), (float *)(sliceInput + (hStart * iw + wStart) * core->pack * core->bytes), hLen, wLen, iw);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// get params
|
|
auto iw = input->width(), ih = input->height(), is = iw * ih * core->pack;
|
|
// backward mode, output shape is the same with input[0] shape
|
|
auto& bwDiff = inputs[2];
|
|
auto ow = bwDiff->width(), oh = bwDiff->height(), os = ow * oh * core->pack;
|
|
auto slice = UP_DIV(input->channel(), core->pack);
|
|
auto numROI = inputs[1]->batch();
|
|
::memset(output->host<uint8_t>(), 0, static_cast<CPUBackend*>(backend())->getTensorSize(output, true));
|
|
for (int n = 0; n < numROI; ++n) {
|
|
auto batchBwDiff = inputs[2]->host<uint8_t>() + os * n * core->bytes;
|
|
auto roiPtr = roiPtrSrc + roiTensor->buffer().dim[0].stride * n;
|
|
int roi = roiPtr[0];
|
|
int x1 = round(roiPtr[1] * mSpatialScale);
|
|
int y1 = round(roiPtr[2] * mSpatialScale);
|
|
int x2 = round(roiPtr[3] * mSpatialScale);
|
|
int y2 = round(roiPtr[4] * mSpatialScale);
|
|
MNN_ASSERT(roi < input->batch());
|
|
|
|
int roiW = max(x2 - x1 + 1, 1);
|
|
int roiH = max(y2 - y1 + 1, 1);
|
|
|
|
float binSizeW = (float)roiW / (float)mPooledWidth;
|
|
float binSizeH = (float)roiH / (float)mPooledHeight;
|
|
|
|
auto batchInput = input->host<uint8_t>() + is * roi * core->bytes;
|
|
auto batchOutput = output->host<uint8_t>() + is * roi * core->bytes;
|
|
for (int s = 0; s < slice; s++) {
|
|
auto sliceInput = batchInput + is * input->batch() * s * core->bytes;
|
|
auto sliceOutput = batchOutput + is * input->batch() * s * core->bytes;
|
|
auto rowBwDiff = batchBwDiff + os * bwDiff->batch() * s * core->bytes;
|
|
float binPh = 0;
|
|
for (int ph = 0; ph < mPooledHeight; ph++, rowBwDiff += mPooledWidth * core->pack * core->bytes) {
|
|
// Compute pooling region for this output unit:
|
|
// start (included) = floor(ph * roiHeight / pooledHeight)
|
|
// end (excluded) = ceil((ph + 1) * roiHeight / pooledHeight)
|
|
int hStart = min(max(y1 + (int)floorf(binPh), 0), ih);
|
|
binPh += binSizeH;
|
|
int hEnd = min(max(y1 + (int)ceilf(binPh), 0), ih);
|
|
int hLen = hEnd - hStart;
|
|
if (hLen <= 0) {
|
|
continue;
|
|
}
|
|
|
|
float binPw = 0;
|
|
for (int pw = 0; pw < mPooledWidth; pw++) {
|
|
int wStart = min(max(x1 + (int)floorf(binPw), 0), iw);
|
|
binPw += binSizeW;
|
|
int wEnd = min(max(x1 + (int)ceilf(binPw), 0), iw);
|
|
int wLen = wEnd - wStart;
|
|
if (wLen <= 0) {
|
|
continue;
|
|
}
|
|
{
|
|
std::vector<int> indices(core->pack);
|
|
std::vector<float> maxes(core->pack, -FLT_MAX);
|
|
float* src = (float *)(sliceInput + (hStart * iw + wStart) * core->pack * core->bytes);
|
|
float* diff = (float *)(rowBwDiff + pw * core->pack * core->bytes);
|
|
for (int h = 0; h < hLen; h++, src += iw * core->pack) {
|
|
for (int w = 0; w < wLen; w++) {
|
|
int spatialIndex = (h + hStart) * iw + (wStart + w);
|
|
float* srcPtr = src + w * core->pack;
|
|
std::vector<float*> pre(core->pack, nullptr);
|
|
for (int k = 0; k < core->pack; k++) {
|
|
if (srcPtr[k] > maxes[k]) {
|
|
maxes[k] = srcPtr[k];
|
|
indices[k] = spatialIndex;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (int k = 0; k < core->pack; k++) {
|
|
int h = indices[k] / iw;
|
|
int w = indices[k] % iw;
|
|
float* out = (float *)(sliceOutput + (h * iw + w) * core->pack * core->bytes);
|
|
out[k] += diff[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUROIPoolingCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const {
|
|
auto roi = op->main_as_RoiParameters();
|
|
auto core = static_cast<CPUBackend*>(backend)->functions();
|
|
if (core->MNNRoiPoolingMax == nullptr) {
|
|
MNN_ERROR("Don't have function for CPUROIPooling\n");
|
|
return nullptr;
|
|
}
|
|
if (core->bytes < 4 && roi->outputGrad()) {
|
|
return nullptr;
|
|
}
|
|
return new CPUROIPooling(backend, roi->pooledWidth(), roi->pooledHeight(), roi->spatialScale(), roi->outputGrad());
|
|
}
|
|
};
|
|
REGISTER_CPU_OP_CREATOR(CPUROIPoolingCreator, OpType_ROIPooling);
|
|
|
|
} // namespace MNN
|