mirror of https://github.com/alibaba/MNN.git
438 lines
16 KiB
C++
438 lines
16 KiB
C++
//
|
|
// CPUReduction.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/07/25.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUReduction.hpp"
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
#include "backend/cpu/compute/ConvOpt.h"
|
|
#include "core/Concurrency.h"
|
|
#include "core/Macro.h"
|
|
#include <cmath>
|
|
#include <algorithm>
|
|
#include "core/OpCommonUtils.hpp"
|
|
#define UNIT 4
|
|
#define UNIT_DUP(value) \
|
|
{ (value), (value), (value), (value) }
|
|
|
|
namespace MNN {
|
|
// outside, axis, inside
|
|
|
|
class Reduction : public Execution {
|
|
public:
|
|
Reduction(Backend* backend, const Op* op) : Execution(backend) {
|
|
// Do nothing
|
|
mAxis = op->main_as_ReductionParam()->dim()->data()[0];
|
|
}
|
|
virtual ~Reduction() = default;
|
|
|
|
virtual ErrorCode onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) override {
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
auto typeCode = input->getType().code;
|
|
auto src = inputs[0];
|
|
int outside = 1;
|
|
for(int i=0; i<mAxis; ++i) {
|
|
outside *= input->length(i);
|
|
}
|
|
int inside = 1;
|
|
for(int i=mAxis+1; i<input->dimensions(); ++i) {
|
|
inside *= input->length(i);
|
|
}
|
|
auto axis = input->length(mAxis);
|
|
auto dst = output;
|
|
//MNN_ASSERT(output->elementSize() == inside * outside);
|
|
if (halide_type_float == typeCode) {
|
|
this->onReduce(src->host<float>(), dst->host<float>(), inside, outside, axis);
|
|
} else if (halide_type_int == typeCode) {
|
|
this->onReduce(src->host<int32_t>(), dst->host<int32_t>(), inside, outside, axis);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
protected:
|
|
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axis) const = 0;
|
|
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outsize, int axis) const = 0;
|
|
private:
|
|
int mAxis = -1;
|
|
};
|
|
|
|
class MeanReduce : public Reduction {
|
|
public:
|
|
MeanReduce(Backend* backend, const Op* op) : Reduction(backend, op) {
|
|
// nothing to do
|
|
}
|
|
virtual ~MeanReduce() = default;
|
|
|
|
protected:
|
|
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axisSize) const override {
|
|
auto numberThread = ((CPUBackend*)backend())->threadNumber();
|
|
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
|
|
for (int oi = tId; oi < outside; oi+=numberThread) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
if (inside % 4 == 0) {
|
|
::memcpy(dstOutSide, srcOutSide, inside * sizeof(float));
|
|
for (int a = 1; a < axisSize; ++a) {
|
|
auto srcAxis = srcOutSide + a * inside;
|
|
MNNMatrixAddCommon(dstOutSide, dstOutSide, srcAxis, inside, 0, 0, 0, 1);
|
|
}
|
|
float divide = 1.0f / (float)axisSize;
|
|
for (int i=0; i<inside; ++i) {
|
|
dstOutSide[i] = dstOutSide[i] * divide;
|
|
}
|
|
} else {
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
float summer = 0.0f;
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
summer += srcInside[a * inside];
|
|
}
|
|
*dstInside = summer / (float)axisSize;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
}
|
|
|
|
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
int32_t summer = 0;
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
summer += srcInside[a * inside];
|
|
}
|
|
*dstInside = summer / axisSize;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class SumReduce : public Reduction {
|
|
public:
|
|
SumReduce(Backend* backend, const Op* op) : Reduction(backend, op) {
|
|
// nothing to do
|
|
}
|
|
virtual ~SumReduce() = default;
|
|
|
|
protected:
|
|
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axisSize) const override {
|
|
auto numberThread = ((CPUBackend*)backend())->threadNumber();
|
|
auto core = static_cast<CPUBackend*>(backend())->functions();
|
|
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
|
|
for (int oi = tId; oi < outside; oi+=numberThread) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
if (inside % 4 == 0) {
|
|
::memcpy(dstOutSide, srcOutSide, inside * sizeof(float));
|
|
for (int a = 1; a < axisSize; ++a) {
|
|
auto srcAxis = srcOutSide + a * inside;
|
|
MNNMatrixAddCommon(dstOutSide, dstOutSide, srcAxis, inside, 0, 0, 0, 1);
|
|
}
|
|
} else {
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
float summer = 0.0f;
|
|
if (inside == 1) {
|
|
core->MNNAccumulateSequenceNumber(&summer, srcInside, axisSize);
|
|
} else {
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
summer += srcInside[a * inside];
|
|
}
|
|
}
|
|
*dstInside = summer;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
}
|
|
|
|
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
int32_t summer = 0;
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
summer += srcInside[a * inside];
|
|
}
|
|
*dstInside = summer;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class MinReduce : public Reduction {
|
|
public:
|
|
MinReduce(Backend* backend, const Op* op) : Reduction(backend, op) {
|
|
// nothing to do
|
|
}
|
|
virtual ~MinReduce() = default;
|
|
|
|
protected:
|
|
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
float Min = srcInside[0];
|
|
if (1 == inside) {
|
|
int32_t inputCountUnit = axisSize / (UNIT * 2);
|
|
int32_t remain = axisSize - (inputCountUnit * UNIT * 2);
|
|
float minArray[UNIT] = UNIT_DUP(Min);
|
|
MNNMinFloat((float*)srcInside, minArray, inputCountUnit);
|
|
|
|
for (int i = 0; i < UNIT; i++) {
|
|
Min = std::min(Min, minArray[i]);
|
|
}
|
|
if (remain > 0) {
|
|
int currentIndex = inputCountUnit * UNIT * 2;
|
|
for (int i = 0; i < remain; i++) {
|
|
float currentInputData = srcInside[currentIndex + i];
|
|
Min = std::min(Min, currentInputData);
|
|
}
|
|
}
|
|
} else {
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
Min = std::min(Min, srcInside[a * inside]);
|
|
}
|
|
}
|
|
*dstInside = Min;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
int32_t Min = srcInside[0];
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
Min = std::min(Min, srcInside[a * inside]);
|
|
}
|
|
*dstInside = Min;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class MaxReduce : public Reduction {
|
|
public:
|
|
MaxReduce(Backend* backend, const Op* op) : Reduction(backend, op) {
|
|
// nothing to do
|
|
}
|
|
virtual ~MaxReduce() = default;
|
|
|
|
protected:
|
|
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
float Max = srcInside[0];
|
|
if (1 == inside && axisSize > UNIT * 2) {
|
|
int32_t inputCountUnit = axisSize / (UNIT * 2);
|
|
int32_t remain = axisSize - (inputCountUnit * UNIT * 2);
|
|
float maxArray[UNIT] = UNIT_DUP(Max);
|
|
|
|
MNNMaxFloat((float*)srcInside, maxArray, inputCountUnit);
|
|
|
|
for (int i = 0; i < UNIT; i++) {
|
|
Max = std::max(Max, maxArray[i]);
|
|
}
|
|
if (remain > 0) {
|
|
int currentIndex = inputCountUnit * UNIT * 2;
|
|
for (int i = 0; i < remain; i++) {
|
|
float currentInputData = srcInside[currentIndex + i];
|
|
Max = std::max(Max, currentInputData);
|
|
}
|
|
}
|
|
} else {
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
Max = std::max(Max, srcInside[a * inside]);
|
|
}
|
|
}
|
|
*dstInside = Max;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
int32_t Max = srcInside[0];
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
Max = std::max(Max, srcInside[a * inside]);
|
|
}
|
|
*dstInside = Max;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class ProdReduce : public Reduction {
|
|
public:
|
|
ProdReduce(Backend* backend, const Op* op) : Reduction(backend, op) {
|
|
// nothing to do
|
|
}
|
|
virtual ~ProdReduce() = default;
|
|
|
|
protected:
|
|
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
float product = 1.0f;
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
product *= srcInside[a * inside];
|
|
}
|
|
*dstInside = product;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
int32_t product = 1;
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
product *= srcInside[a * inside];
|
|
}
|
|
*dstInside = product;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class AnyReduce : public Reduction {
|
|
public:
|
|
AnyReduce(Backend* backend, const Op* op) : Reduction(backend, op) {
|
|
// nothing to do
|
|
}
|
|
virtual ~ AnyReduce() = default;
|
|
protected:
|
|
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axisSize) const override {
|
|
MNN_ASSERT(false);
|
|
}
|
|
|
|
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
int32_t result = 0;
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
if (srcInside[a * inside] > 0) {
|
|
result = 1;
|
|
break;
|
|
}
|
|
}
|
|
*dstInside = result;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class AllReduce : public Reduction {
|
|
public:
|
|
AllReduce(Backend* backend, const Op* op) : Reduction(backend, op) {
|
|
// nothing to do
|
|
}
|
|
virtual ~ AllReduce() = default;
|
|
protected:
|
|
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axisSize) const override {
|
|
MNN_ASSERT(false);
|
|
}
|
|
|
|
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outside, int axisSize) const override {
|
|
for (int oi = 0; oi < outside; ++oi) {
|
|
auto srcOutSide = src + oi * axisSize * inside;
|
|
auto dstOutSide = dst + oi * inside;
|
|
for (int ii = 0; ii < inside; ++ii) {
|
|
auto srcInside = srcOutSide + ii;
|
|
auto dstInside = dstOutSide + ii;
|
|
int32_t result = 1;
|
|
for (int a = 0; a < axisSize; ++a) {
|
|
if (srcInside[a * inside] == 0) {
|
|
result = 0;
|
|
break;
|
|
}
|
|
}
|
|
*dstInside = result;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
Execution* CPUReductionCreator::onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const {
|
|
return create(inputs, outputs, op, backend);
|
|
}
|
|
|
|
Execution* CPUReductionCreator::create(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) {
|
|
auto type = inputs[0]->getType();
|
|
if (type.bits != 32) {
|
|
return nullptr;
|
|
}
|
|
if (type.code != halide_type_float && type.code != halide_type_int) {
|
|
return nullptr;
|
|
}
|
|
switch (op->main_as_ReductionParam()->operation()) {
|
|
case ReductionType_MEAN:
|
|
return new MeanReduce(backend, op);
|
|
case ReductionType_SUM:
|
|
return new SumReduce(backend, op);
|
|
case ReductionType_MINIMUM:
|
|
return new MinReduce(backend, op);
|
|
case ReductionType_MAXIMUM:
|
|
return new MaxReduce(backend, op);
|
|
case ReductionType_PROD:
|
|
return new ProdReduce(backend, op);
|
|
case ReductionType_ANY:
|
|
return new AnyReduce(backend, op);
|
|
case ReductionType_ALL:
|
|
return new AllReduce(backend, op);
|
|
default:
|
|
MNN_ASSERT(false);
|
|
break;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUReductionCreator, OpType_Reduction);
|
|
|
|
} // namespace MNN
|