mirror of https://github.com/alibaba/MNN.git
191 lines
8.8 KiB
C++
191 lines
8.8 KiB
C++
//
|
|
// OneDNNConvInt8.cpp
|
|
//
|
|
//
|
|
#ifdef MNN_USE_ONEDNN
|
|
#include "backend/cpu/OneDNNConvInt8.hpp"
|
|
#include "core/ConvolutionCommon.hpp"
|
|
using namespace dnnl;
|
|
using tag = memory::format_tag;
|
|
using dt = memory::data_type;
|
|
|
|
namespace MNN {
|
|
OneDNNConvInt8::~OneDNNConvInt8() {
|
|
// Do nothing
|
|
}
|
|
|
|
Execution* OneDNNConvInt8::create(Backend* backend, const MNN::Convolution2D* convParam, const std::vector<Tensor*>& inputs, const std::vector<Tensor *> &outputs) {
|
|
std::shared_ptr<OneDNNConvInt8::Resource> resource(new OneDNNConvInt8::Resource);
|
|
resource->backend = backend;
|
|
const auto convCommon = convParam->common();
|
|
const auto kw = convCommon->kernelX();
|
|
const auto kh = convCommon->kernelY();
|
|
const auto ic = convCommon->inputCount();
|
|
const auto oc = convCommon->outputCount();
|
|
const auto strideX = convCommon->strideX();
|
|
const auto strideY = convCommon->strideY();
|
|
auto weights = convParam->symmetricQuan()->weight()->data();
|
|
auto bias = convParam->symmetricQuan()->bias()->data();
|
|
std::vector<float> scale(oc);
|
|
for (auto i = 0; i < scale.size(); i++) {
|
|
scale[i] = convParam->symmetricQuan()->scale()->data()[i];
|
|
}
|
|
const int conv_mask = 2;
|
|
resource->conv_attr.set_output_scales(conv_mask, scale);
|
|
if (convCommon->relu() || convCommon->relu6()) {
|
|
post_ops ops;
|
|
ops.append_eltwise(1.0f, algorithm::eltwise_relu, 0.0f, 0.0f);
|
|
resource->conv_attr.set_post_ops(ops);
|
|
}
|
|
auto eng = engine(engine::kind::cpu, 0);
|
|
resource->eng = eng;
|
|
auto stm = stream(eng);
|
|
memory::dims conv_weights_tz = {oc, ic, kh, kw};
|
|
memory::dims conv_bias_tz = {oc};
|
|
memory::dims conv_strides = {strideX, strideY};
|
|
memory::dims conv_src_tz = {1, ic, convCommon->strideY() + (kh - 1) * convCommon->dilateY() + 1, (kw - 1) * convCommon->dilateX() + 1 + convCommon->strideX()};
|
|
memory::dims conv_dst_tz = {1, oc, 2, 2};
|
|
memory::dims conv_padding = {0, 0};
|
|
|
|
auto user_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::oihw);
|
|
|
|
auto conv_src_md = memory::desc({conv_src_tz}, dt::s8, tag::any);
|
|
auto conv_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::any);
|
|
auto conv_bias_md = memory::desc({conv_bias_tz}, dt::s32, tag::a);
|
|
auto conv_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::any);
|
|
|
|
auto conv_desc = convolution_forward::desc(prop_kind::forward_inference,
|
|
algorithm::convolution_auto, conv_src_md, conv_weights_md, conv_bias_md,
|
|
conv_dst_md, conv_strides, conv_padding, conv_padding);
|
|
auto conv_pd = convolution_forward::primitive_desc(conv_desc, resource->conv_attr, eng);
|
|
auto weightSrc = convParam->symmetricQuan()->weight()->data();
|
|
resource->mWeight.reset(Tensor::createDevice<int8_t>({(int)conv_pd.weights_desc().get_size()}));
|
|
resource->mBias.reset(Tensor::createDevice<int32_t>({(int)convParam->symmetricQuan()->bias()->size()}));
|
|
auto res = backend->onAcquireBuffer(resource->mWeight.get(), Backend::STATIC);
|
|
res = res && backend->onAcquireBuffer(resource->mBias.get(), Backend::STATIC);
|
|
if (!res) {
|
|
return nullptr;
|
|
}
|
|
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
|
|
if (convParam->quanParameter() != nullptr) {
|
|
quanCommon = ConvolutionCommon::load(convParam, backend, false);
|
|
weightSrc = quanCommon->weight.get();
|
|
}
|
|
auto user_weights = memory(user_weights_md, eng, (int8_t*)weightSrc);
|
|
auto conv_weights = memory(conv_pd.weights_desc(), eng, resource->mWeight->host<int8_t>());
|
|
auto r_pd = reorder::primitive_desc(user_weights, conv_weights);
|
|
reorder(r_pd).execute(stm, user_weights, conv_weights);
|
|
::memcpy(resource->mBias->host<int32_t>(), convParam->symmetricQuan()->bias()->data(), convParam->symmetricQuan()->bias()->size() * sizeof(int32_t));
|
|
resource->conv_bias = memory(conv_bias_md, eng, resource->mBias->host<int32_t>());
|
|
resource->conv_weights = conv_weights;
|
|
return new OneDNNConvInt8(resource, convCommon, backend);
|
|
}
|
|
|
|
OneDNNConvInt8::OneDNNConvInt8(std::shared_ptr<OneDNNConvInt8::Resource> resource, const MNN::Convolution2DCommon* common, Backend* bn) : CPUConvolution(common, bn) {
|
|
mResource = resource;
|
|
stm = stream(mResource->eng);
|
|
}
|
|
|
|
bool OneDNNConvInt8::onClone(Backend* bn, const Op* op, Execution** dst) {
|
|
if (nullptr == dst) {
|
|
return true;
|
|
}
|
|
auto dstExe = new OneDNNConvInt8(mResource, op->main_as_Convolution2D()->common(), bn);
|
|
*dst = dstExe;
|
|
return true;
|
|
}
|
|
|
|
ErrorCode OneDNNConvInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
const auto convCommon = mCommon;
|
|
const auto kw = convCommon->kernelX();
|
|
const auto kh = convCommon->kernelY();
|
|
const auto ic = convCommon->inputCount();
|
|
const auto oc = convCommon->outputCount();
|
|
const auto strideX = convCommon->strideX();
|
|
const auto strideY = convCommon->strideY();
|
|
const auto ih = inputs[0]->height();
|
|
const auto iw = inputs[0]->width();
|
|
const auto oh = outputs[0]->height();
|
|
const auto ow = outputs[0]->width();
|
|
auto pads = ConvolutionCommon::convolutionPadFull(inputs[0], outputs[0], mCommon);
|
|
|
|
memory::dims conv_src_tz = {inputs[0]->batch(), ic, ih, iw};
|
|
memory::dims conv_weights_tz = {oc, ic, kh, kw};
|
|
memory::dims conv_bias_tz = {oc};
|
|
memory::dims conv_dst_tz = {outputs[0]->batch(), oc, oh, ow};
|
|
memory::dims conv_strides = {strideX, strideY};
|
|
|
|
auto user_src_md = memory::desc({conv_src_tz}, dt::s8, tag::nChw4c);
|
|
auto user_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::oihw);
|
|
auto user_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::nChw4c);
|
|
|
|
auto conv_src_md = memory::desc({conv_src_tz}, dt::s8, tag::any);
|
|
auto conv_dst_md = memory::desc({conv_dst_tz}, dt::s8, tag::any);
|
|
|
|
user_src = memory(user_src_md, mResource->eng, inputs[0]->host<int8_t>());
|
|
user_dst = memory(user_dst_md, mResource->eng, outputs[0]->host<int8_t>());
|
|
mSrcTemp = nullptr;
|
|
mDstTemp = nullptr;
|
|
|
|
// Fix weight desc and bias desc
|
|
auto conv_desc = convolution_forward::desc(prop_kind::forward_inference,
|
|
algorithm::convolution_auto, conv_src_md, mResource->conv_weights.get_desc(), mResource->conv_bias.get_desc(),
|
|
conv_dst_md, conv_strides, {std::get<1>(pads), std::get<0>(pads)}, {std::get<3>(pads), std::get<2>(pads)});
|
|
auto conv_pd = convolution_forward::primitive_desc(conv_desc, mResource->conv_attr, mResource->eng);
|
|
conv = convolution_forward(conv_pd);
|
|
mSrcTemp = nullptr;
|
|
mDstTemp = nullptr;
|
|
if (conv_pd.src_desc() != user_src.get_desc()) {
|
|
auto needSize = conv_pd.src_desc().get_size();
|
|
mSrcTemp.reset(Tensor::createDevice<int8_t>({(int)needSize}));
|
|
auto res = backend()->onAcquireBuffer(mSrcTemp.get(), Backend::DYNAMIC);
|
|
if (!res) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
conv_src = memory(conv_pd.src_desc(), mResource->eng, mSrcTemp->host<int8_t>());
|
|
}
|
|
if (conv_pd.dst_desc() != user_dst.get_desc()) {
|
|
auto needSize = conv_pd.dst_desc().get_size();
|
|
mDstTemp.reset(Tensor::createDevice<int8_t>({(int)needSize}));
|
|
auto res = backend()->onAcquireBuffer(mDstTemp.get(), Backend::DYNAMIC);
|
|
if (!res) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
conv_dst = memory(conv_pd.dst_desc(), mResource->eng, mDstTemp->host<int8_t>());
|
|
}
|
|
if (nullptr != mSrcTemp) {
|
|
backend()->onReleaseBuffer(mSrcTemp.get(), Backend::DYNAMIC);
|
|
}
|
|
if (nullptr != mDstTemp) {
|
|
backend()->onReleaseBuffer(mDstTemp.get(), Backend::DYNAMIC);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode OneDNNConvInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
const auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
|
|
memory conv_src_temp = user_src;
|
|
if (nullptr != mSrcTemp) {
|
|
auto r_pd = reorder::primitive_desc(user_src, conv_src);
|
|
reorder(r_pd).execute(stm, user_src, conv_src);
|
|
conv_src_temp = conv_src;
|
|
}
|
|
memory conv_dst_temp = user_dst;
|
|
if (nullptr != mDstTemp) {
|
|
conv_dst_temp = conv_dst;
|
|
}
|
|
conv.execute(stm, {{DNNL_ARG_SRC, conv_src_temp},
|
|
{DNNL_ARG_WEIGHTS, mResource->conv_weights},
|
|
{DNNL_ARG_BIAS, mResource->conv_bias},
|
|
{DNNL_ARG_DST, conv_dst_temp}});
|
|
if (nullptr != mDstTemp) {
|
|
auto r_pd = reorder::primitive_desc(conv_dst, user_dst);
|
|
reorder(r_pd).execute(stm, conv_dst, user_dst);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
} // namespace MNN
|
|
#endif
|