MNN/source/core/OpCommonUtils.cpp

912 lines
32 KiB
C++

//
// OpCommonUtils.cpp
// MNN
//
// Created by MNN on 2020/03/08.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "OpCommonUtils.hpp"
#include "core/Execution.hpp"
#include "MNN_generated.h"
#include "Macro.h"
#include <random>
namespace MNN {
Tensor::DimensionType OpCommonUtils::convertDimType(MNN_DATA_FORMAT dimensionFormat) {
auto dimType = Tensor::CAFFE;
switch (dimensionFormat) {
case MNN_DATA_FORMAT_NCHW:
break;
case MNN_DATA_FORMAT_NC4HW4:
dimType = Tensor::CAFFE_C4;
break;
case MNN_DATA_FORMAT_NHWC:
dimType = Tensor::TENSORFLOW;
break;
default:
break;
}
return dimType;
}
void OpCommonUtils::loadBlobData(FileLoader* loader, const Op* op, char* ptr, int size) {
if (OpParameter_Blob != op->main_type()) {
return;
}
auto b = op->main_as_Blob();
if (USE_EXTERNAL_DATA(b)) {
if (op->externalPath() != nullptr) {
loader = new FileLoader(op->externalPath()->c_str());
}
loadExternalDatas(loader, { ptr }, b->external()->data());
if (op->externalPath() != nullptr) {
delete loader;
}
return;
}
void* result = nullptr;
switch (b->dataType()) {
case DataType_DT_FLOAT:
result = (void*)b->float32s()->Data();
break;
case DataType_DT_BFLOAT16:
result = (void*)b->uint8s()->Data();
break;
case DataType_DT_INT32:
result = (void*)b->int32s()->Data();
break;
case DataType_DT_QUINT8:
case DataType_DT_UINT8:
result = (void*)b->uint8s()->Data();
break;
case DataType_DT_INT8:
result = (void*)b->int8s()->Data();
break;
default:
MNN_ASSERT(false);
break;
}
::memcpy(ptr, result, size);
}
static std::tuple<int, int, int> _split(int offset, int axisL, int area) {
int inside = offset % area;
int temp = offset / area;
int axis = temp % axisL;
int outside = temp / axisL;
return std::make_tuple(inside, axis, outside);
}
static std::tuple<bool, bool, bool> _computeAxisFused(const std::tuple<int, int, int>& dstTup) {
bool ncFused = std::get<1>(dstTup) > 0 && std::get<2>(dstTup) > 0;
bool nwFused = std::get<0>(dstTup) > 0 && std::get<2>(dstTup) > 0;
bool cwFused = std::get<1>(dstTup) > 0 && std::get<0>(dstTup) > 0;
return std::make_tuple(ncFused, cwFused, nwFused);
}
static std::tuple<int, int, int> _computeStride(const std::tuple<int, int, int>& srcTup, const std::tuple<int, int, int>& srcSplit, int step, bool swapnc, int stride) {
int inside = std::get<0>(srcTup) / step;
int axis = std::get<1>(srcTup) / step;
int outside = std::get<2>(srcTup) / step;
auto fuse = _computeAxisFused(srcTup);
if (std::get<0>(fuse)) {
// nc fused
if (swapnc) {
axis = 0;
outside = stride / std::get<0>(srcSplit);
} else {
outside = 0;
axis = stride / std::get<0>(srcSplit);
}
} else if (std::get<2>(fuse)) {
// nw fused
outside = 0;
inside = stride;
} else if (std::get<1>(fuse)) {
// cw fused
axis = 0;
inside = stride;
}
return std::make_tuple(inside, axis, outside);
}
static bool _checkFuseValid(const OpCommonUtils::SPLITS& srcTup, const OpCommonUtils::SPLITS& srcSplits, bool swapnc, bool swapcw, const std::tuple<bool,bool,bool>& valid) {
auto srcFused = _computeAxisFused(srcTup);
if (swapnc) {
// cw can't be fused if n > 1, because layout is c, n, w
if (std::get<1>(srcFused) && std::get<2>(valid)) {
return false;
}
if (std::get<0>(srcFused)) {
// nc fuse but n is not full, don't support fuse
if (std::get<2>(srcTup) + 1 != std::get<2>(srcSplits)) {
return false;
}
}
} else if (swapcw) {
// nc can't be fused if w > 1
if (std::get<0>(srcFused) && std::get<0>(valid)) {
return false;
}
if (std::get<1>(srcFused)) {
// cw fuse but c is not full, don't support fuse
if (std::get<1>(srcTup) + 1 != std::get<1>(srcSplits)) {
return false;
}
}
} else {
// nw can't be fused if c > 1
if (std::get<2>(srcFused) && std::get<1>(valid)) {
return false;
}
// nc can't be fused if w > 1
if (std::get<0>(srcFused) && std::get<0>(valid)) {
return false;
}
// cw can't be fused if n > 1, because layout is c, n, w
if (std::get<1>(srcFused) && std::get<2>(valid)) {
return false;
}
}
return true;
}
bool OpCommonUtils::canBlitFast(const Tensor::InsideDescribe::Region& region, const SPLITS& srcSplits,
const SPLITS& dstSplits, int pack, bool swapnc, bool swapcw) {
int srcCOffset = (region.src.offset / std::get<0>(srcSplits)) % std::get<1>(srcSplits);
if (srcCOffset % pack != 0) {
return false;
}
int dstCOffset = (region.dst.offset / std::get<0>(dstSplits)) % std::get<1>(dstSplits);
if (dstCOffset % pack != 0) {
return false;
}
auto wValid = std::get<0>(srcSplits) > 1 || std::get<0>(dstSplits) > 1;
auto cValid = std::get<1>(srcSplits) > 1 || std::get<1>(dstSplits) > 1;
auto nValid = std::get<2>(srcSplits) > 1 || std::get<2>(dstSplits) > 1;
auto valid = std::make_tuple(wValid, cValid, nValid);
// Check Dst stride
for (int i = 0; i < 3; ++i) {
if (region.size[i] <= 1) {
continue;
}
int dstStride = (region.size[i] - 1) * region.dst.stride[i];
auto srcStride = region.src.stride[i] * (region.size[i] - 1);
auto dstTup = _split(dstStride, std::get<1>(dstSplits), std::get<0>(dstSplits));
auto srcTup = _split(srcStride, std::get<1>(srcSplits), std::get<0>(srcSplits));
if (std::get<1>(dstTup) != std::get<1>(srcTup)) {
return false;
}
if (!_checkFuseValid(srcTup, srcSplits, swapnc, swapcw, valid)) {
return false;
}
if (!_checkFuseValid(dstTup, dstSplits, swapnc, swapcw, valid)) {
return false;
}
}
return true;
}
void OpCommonUtils::turnToPackRegion(const Tensor::InsideDescribe::Region& region,
Tensor::InsideDescribe::Region& c4Region, const SPLITS& srcSplits,
const SPLITS& dstSplits, int pack, bool swapnc) {
int srcAxisC4 = UP_DIV(std::get<1>(srcSplits), pack);
auto dstAxisC4 = UP_DIV(std::get<1>(dstSplits), pack);
auto fuseSrc = std::get<0>(srcSplits) * std::get<2>(srcSplits);
auto fuseDst = std::get<0>(dstSplits) * std::get<2>(dstSplits);
for (int i = 0; i < 3; ++i) {
int dstStride = (region.size[i] - 1) * region.dst.stride[i];
// Get Last Point's inside, axis, outside postion
auto tup = _split(dstStride, std::get<1>(dstSplits), std::get<0>(dstSplits));
if (std::get<1>(tup) > 0) {
// The size has axis offset, divide the axis and mul axisC4 instead
auto midC4 = UP_DIV(std::get<1>(tup) + 1, pack);
c4Region.size[i] = region.size[i] / (std::get<1>(tup) + 1) * midC4;
}
}
for (int i = 0; i < 3; ++i) {
if (region.size[i] <= 1) {
// No need compute stride
c4Region.src.stride[i] = 0;
c4Region.dst.stride[i] = 0;
continue;
}
int step = region.size[i] - 1;
int dstStride = region.dst.stride[i] * step;
auto srcStride = region.src.stride[i] * step;
auto dstTup = _split(dstStride, std::get<1>(dstSplits), std::get<0>(dstSplits));
auto srcTup = _split(srcStride, std::get<1>(srcSplits), std::get<0>(srcSplits));
{
auto tup = _computeStride(srcTup, srcSplits, step, swapnc, region.src.stride[i]);
int inside = std::get<0>(tup);
int axis = std::get<1>(tup);
int outside = std::get<2>(tup);
if (swapnc) {
c4Region.src.stride[i] =
outside * std::get<0>(srcSplits) + axis * std::get<0>(srcSplits) * std::get<2>(srcSplits) + inside;
} else {
c4Region.src.stride[i] =
outside * srcAxisC4 * std::get<0>(srcSplits) + axis * std::get<0>(srcSplits) + inside;
}
}
{
auto tup = _computeStride(dstTup, dstSplits, step, swapnc, region.dst.stride[i]);
int inside = std::get<0>(tup);
int axis = std::get<1>(tup);
int outside = std::get<2>(tup);
if (swapnc) {
c4Region.dst.stride[i] =
outside * std::get<0>(dstSplits) + axis * std::get<0>(dstSplits) * std::get<2>(dstSplits) + inside;
} else {
c4Region.dst.stride[i] =
outside * dstAxisC4 * std::get<0>(dstSplits) + axis * std::get<0>(dstSplits) + inside;
}
}
}
{
// Origin offset is compute as NCHW
auto offsetTup = _split(region.src.offset, std::get<1>(srcSplits), std::get<0>(srcSplits));
if (swapnc) {
// New offset is compute as C4NHW
c4Region.src.offset = std::get<2>(offsetTup) * pack * std::get<0>(srcSplits)
+ std::get<1>(offsetTup) * std::get<0>(srcSplits) * std::get<2>(srcSplits)
+ std::get<0>(offsetTup) * pack;
} else {
c4Region.src.offset = std::get<2>(offsetTup) * srcAxisC4 * pack * std::get<0>(srcSplits) +
std::get<1>(offsetTup) * std::get<0>(srcSplits) + std::get<0>(offsetTup) * pack;
}
}
{
// Origin offset is compute as NCHW
auto offsetTup = _split(region.dst.offset, std::get<1>(dstSplits), std::get<0>(dstSplits));
if (swapnc) {
// New offset is compute as C4NHW
c4Region.dst.offset = std::get<2>(offsetTup) * pack * std::get<0>(dstSplits)
+ std::get<1>(offsetTup) * std::get<0>(dstSplits) * std::get<2>(dstSplits)
+ std::get<0>(offsetTup) * pack;
} else {
c4Region.dst.offset = std::get<2>(offsetTup) * dstAxisC4 * pack * std::get<0>(dstSplits) +
std::get<1>(offsetTup) * std::get<0>(dstSplits) + std::get<0>(offsetTup) * pack;
}
}
#ifdef MNN_DEBUG_BLIT
MNN_PRINT("Src WCN: %d-%d-%d, Dst WCN:%d-%d-%d\n", std::get<0>(srcSplits), std::get<1>(srcSplits), std::get<2>(srcSplits), std::get<0>(dstSplits), std::get<1>(dstSplits), std::get<2>(dstSplits));
MNN_PRINT("Origin:%d, %d, %d, %d, src: %d - %d, %d, %d, dst: %d - %d, %d, %d\n", pack,
region.size[0],region.size[1], region.size[2], region.src
.offset, region.src.stride[0], region.src.stride[1], region.src.stride[2], region.dst.offset,
region.dst.stride[0], region.dst .stride[1], region.dst.stride[2]);
MNN_PRINT("Pack:%d, %d, %d, %d, src: %d - %d, %d, %d, dst: %d - %d, %d, %d\n", pack,
c4Region.size[0],c4Region.size[1], c4Region.size[2], c4Region.src
.offset, c4Region.src.stride[0], c4Region.src.stride[1], c4Region.src.stride[2], c4Region.dst.offset,
c4Region.dst.stride[0], c4Region.dst .stride[1], c4Region.dst.stride[2]);
#endif
}
bool OpCommonUtils::canBlitFast(const Tensor::InsideDescribe::Region& region, const Tensor* dest, int pack, bool swapnc, bool swapcw) {
auto src = region.origin;
int srcArea = 1;
// FIXME: Support dimensions = 1
if (src->dimensions() == 1 || dest->dimensions() == 1) {
return false;
}
for (int i = 2; i < src->dimensions(); ++i) {
srcArea *= src->length(i);
}
int dstArea = 1;
for (int i = 2; i < dest->dimensions(); ++i) {
dstArea *= dest->length(i);
}
int inputBatch = 1;
int inputChannel = 1;
if (src->dimensions() > 0) {
inputBatch = src->length(0);
}
if (src->dimensions() > 1) {
inputChannel = src->length(1);
}
int dstBatch = 1;
int dstChannel = 1;
if (dest->dimensions() > 0) {
dstBatch = dest->length(0);
}
if (dest->dimensions() > 1) {
dstChannel = dest->length(1);
}
return canBlitFast(region, std::make_tuple(srcArea, inputChannel, inputBatch),
std::make_tuple(dstArea, dstChannel, dstBatch), pack, swapnc, swapcw);
}
void OpCommonUtils::turnToPackRegion(const Tensor::InsideDescribe::Region& region,
Tensor::InsideDescribe::Region& c4Region, const Tensor* dest, int pack, bool swapnc) {
c4Region = region;
auto src = region.origin;
int srcArea = 1;
for (int i = 2; i < src->dimensions(); ++i) {
srcArea *= src->length(i);
}
int dstArea = 1;
for (int i = 2; i < dest->dimensions(); ++i) {
dstArea *= dest->length(i);
}
int inputBatch = 1;
int inputChannel = 1;
if (src->dimensions() > 0) {
inputBatch = src->length(0);
}
if (src->dimensions() > 1) {
inputChannel = src->length(1);
}
int dstBatch = 1;
int dstChannel = 1;
if (dest->dimensions() > 0) {
dstBatch = dest->length(0);
}
if (dest->dimensions() > 1) {
dstChannel = dest->length(1);
}
turnToPackRegion(region, c4Region, std::make_tuple(srcArea, inputChannel, inputBatch),
std::make_tuple(dstArea, dstChannel, dstBatch), pack, swapnc);
}
void OpCommonUtils::broastCastComputeDim(int* dims, int* stride, int* iStride0, int* iStride1, const Tensor* input0,
const Tensor* input1, const Tensor* output) {
for (int i = MNN_MAX_TENSOR_DIM - 1; i >= 0; --i) {
dims[i] = 1;
stride[i] = 0;
iStride0[i] = 0;
iStride1[i] = 0;
int input0I = i - (output->dimensions() - input0->dimensions());
int input1I = i - (output->dimensions() - input1->dimensions());
if (i < output->dimensions()) {
dims[i] = output->length(i);
stride[i] = output->stride(i);
}
if (input0I >= 0 && input0->length(input0I) != 1) {
iStride0[i] = input0->stride(input0I);
}
if (input1I >= 0 && input1->length(input1I) != 1) {
iStride1[i] = input1->stride(input1I);
}
}
}
std::vector<std::tuple<int, int, int>> OpCommonUtils::computeReduceDims(const std::vector<Tensor*>& inputs,
const Op* op) {
// Compute axises
std::vector<int> axises;
if (inputs.size() >= 2) {
auto size = inputs[1]->elementSize();
auto dims = inputs[1]->host<int32_t>();
for (int i = 0; i < size; ++i) {
axises.emplace_back(dims[i]);
}
} else {
auto reduct = op->main_as_ReductionParam();
if (nullptr != reduct->dim()) {
for (int i = 0; i < reduct->dim()->size(); ++i) {
axises.emplace_back(reduct->dim()->data()[i]);
}
}
}
auto totalSize = TensorUtils::getRawSize(inputs[0]);
if (axises.empty()) {
return {std::make_tuple(1, totalSize, 1)};
}
for (int i = 0; i < axises.size(); ++i) {
if (axises[i] < 0) {
axises[i] = inputs[0]->dimensions() + axises[i];
if (axises[i] < 0) {
return {std::make_tuple(1, totalSize, 1)};
}
}
}
// Cache for input's dims
std::vector<int> lengths(inputs[0]->dimensions());
for (int i = 0; i < lengths.size(); ++i) {
lengths[i] = inputs[0]->length(i);
}
std::vector<std::pair<int, int>> groupAxises;
{
// Merge adj axis
std::sort(axises.begin(), axises.end());
int lastAxis = axises[0];
int length = 1;
int start = axises[0];
for (int i = 1; i < axises.size(); ++i) {
// MNN_PRINT("%d - %d\n", axises[i], lastAxis);
if (axises[i] - lastAxis == 1) {
length++;
} else {
groupAxises.emplace_back(std::make_pair(start, length));
length = 1;
start = axises[i];
}
lastAxis = axises[i];
}
groupAxises.emplace_back(std::make_pair(start, length));
}
// Compute inside-outside-axis
std::vector<std::tuple<int, int, int>> result;
for (int i = 0; i < groupAxises.size(); ++i) {
int outsideSize = 1;
int insideSize = 1;
int axisSize = 1;
auto start = groupAxises[i].first;
auto length = groupAxises[i].second;
if (start >= (int)lengths.size()) {
break;
}
for (int j = 0; j < start; ++j) {
outsideSize *= lengths[j];
}
for (int j = start; j < start + length; ++j) {
if (j >= (int)lengths.size()) {
break;
}
axisSize *= lengths[j];
lengths[j] = 1;
}
for (int j = start + length; j < lengths.size(); ++j) {
insideSize *= lengths[j];
}
if (1 == axisSize) {
continue;
}
result.emplace_back(std::make_tuple(outsideSize, axisSize, insideSize));
}
// FUNC_PRINT(result.size());
if (result.empty()) {
result.emplace_back(std::make_tuple(1, 1, totalSize));
}
return result;
}
void OpCommonUtils::unravelIndexHelper(int32_t* coordinate, const int32_t* mod, int size,
int indice) {
int value = indice;
for (int i = 0; i < size; ++i) {
coordinate[i] = value / mod[i];
value = value % mod[i];
}
}
int OpCommonUtils::computeStride(int32_t* strides, const int* shape, int length) {
if (length <= 0) {
return 1;
}
int stride = 1;
for (int i = length - 1; i >= 0; --i) {
strides[i] = stride;
stride *= shape[i];
}
return stride;
}
bool OpCommonUtils::opNeedContent(const MNN::Op* op, int index) {
int type = op->type();
switch (type) {
case OpType_ZerosLike:
case OpType_ZeroGrad:
case OpType_Shape:
case OpType_Rank:
case OpType_Const:
case OpType_Size:
case OpType_PriorBox:
return false;
case OpType_Interp:
case OpType_Crop:
case OpType_Reshape:
case OpType_Reduction:
case OpType_Resize:
if (1 == index) {
return false;
}
break;
case OpType_GridSample:
if (2 == index) {
return false;
}
break;
#ifdef MNN_SUPPORT_RENDER
case OpType_RasterAndInterpolate:
{
if (0 == index) {
int type = 4;
if (op->main_type() == OpParameter_Extra) {
auto extra = op->main_as_Extra();
if (nullptr != extra->attr()) {
for (int i=0; i<extra->attr()->size(); ++i) {
auto attr = extra->attr()->GetAs<Attribute>(i);
if (attr->key()->str() == "primitiveType") {
type = attr->i();
break;
}
}
}
}
if (type <= 4) {
return false;
}
}
break;
}
#endif
default:
break;
}
return true;
}
bool OpCommonUtils::opCompabilityForLowp(const Op* op, int bytes) {
switch (op->type()) {
case OpType_While:
{
if (bytes == 4) {
return true;
}
if (op->main_type() != OpParameter_LoopParam) {
return false;
}
// Check fuse
auto loop = op->main_as_LoopParam();
if (nullptr != loop->initCommand()) {
for (int i=0; i<loop->initCommand()->size(); ++i) {
auto cmd = loop->initCommand()->GetAs<RegionCommand>(i);
if (cmd->fuse() >= 0) {
return false;
}
}
}
if (nullptr != loop->commands()) {
for (int i=0; i<loop->commands()->size(); ++i) {
auto cmd = loop->commands()->GetAs<RegionCommand>(i);
if (cmd->fuse() >= 0) {
return false;
}
}
}
return true;
}
case OpType_Scale:
case OpType_Convolution:
case OpType_ConvolutionDepthwise:
case OpType_Deconvolution:
case OpType_DeconvolutionDepthwise:
case OpType_MatMul:
case OpType_BatchMatMul:
case OpType_BinaryOp:
case OpType_Eltwise:
case OpType_UnaryOp:
case OpType_Pooling:
case OpType_Raster:
case OpType_ReLU:
case OpType_ReLU6:
case OpType_Select:
case OpType_PReLU:
case OpType_GridSample:
case OpType_ROIPooling:
case OpType_ROIAlign:
case OpType_RNNSequenceGRU:
case OpType_DynamicQuant:
case OpType_Attention:
case OpType_LayerNorm:
case OpType_Softmax:
return true;
default:
break;
}
return false;
}
void OpCommonUtils::rasterInputReset(const std::vector<Tensor *> &inputs, Tensor *output) {
auto outputDes = TensorUtils::getDescribe(output);
// For output with copy, the region's size may not be the same as input's size
outputDes->regions.resize(inputs.size());
for (int i=0; i<outputDes->regions.size(); ++i) {
outputDes->regions[i].origin = inputs[i];
}
}
static bool _RebuildExternalOp(FileLoader* external, const MNN::Op* origin, flatbuffers::FlatBufferBuilder& builder) {
if (nullptr == external) {
MNN_ERROR("Can't rebuild external op because external is nullptr\n");
return false;
}
builder.Clear();
bool externalTmp = false;
if (nullptr != origin->externalPath()) {
external = new FileLoader(origin->externalPath()->c_str());
externalTmp = true;
}
std::shared_ptr<MNN::OpT> op(origin->UnPack());
switch (op->main.type) {
case OpParameter_Scale:
{
auto scale = op->main.AsScale();
int outputCount = static_cast<int>(scale->external[1] / sizeof(float));
scale->scaleData.resize(outputCount);
external->offset(scale->external[0]);
external->read((char*)scale->scaleData.data(), scale->external[1]);
if (scale->external.size() > 2) {
scale->biasData.resize(outputCount);
external->read((char*)scale->biasData.data(), scale->external[2]);
}
break;
}
case OpParameter_LayerNorm:
{
auto layer_norm_param = op->main.AsLayerNorm();
int32_t size = static_cast<int32_t>(layer_norm_param->external[1]);
layer_norm_param->gamma.resize(size / sizeof(float));
layer_norm_param->beta.resize(size / sizeof(float));
external->offset(layer_norm_param->external[0]);
external->read((char*)layer_norm_param->gamma.data(), layer_norm_param->external[1]);
external->read((char*)layer_norm_param->beta.data(), layer_norm_param->external[2]);
break;
}
case OpParameter_Convolution2D:
{
auto param = op->main.AsConvolution2D();
if (param->quanParameter) {
bool isSparse = param->sparseParameter.get() != nullptr;
bool isPTQ = param->quanParameter->scaleIn != 0;
if (isSparse || isPTQ) {
external->offset(param->external[0]);
if (0 != param->external[1]) {
param->quanParameter->buffer.resize(param->external[1]);
external->read((char*)param->quanParameter->buffer.data(), param->external[1]);
}
param->quanParameter->alpha.resize(param->external[2] / sizeof(float));
external->read((char*)param->quanParameter->alpha.data(), param->external[2]);
} else {
// skip weight and dequant alpha for load speed
op->externalPath = external->path();
external->offset(param->external[0] + param->external[1] + param->external[2]);
}
if (param->bias.empty() && param->external.size() > 3) {
if (param->external[3] > 0) {
param->bias.resize(param->external[3]/sizeof(float));
external->read((char*)param->bias.data(), param->external[3]);
} else {
param->bias.resize(param->common->outputCount);
}
}
if (param->quanParameter->index.empty() && param->external.size() > 4) {
param->quanParameter->index.resize(param->external[4]/sizeof(uint32_t));
external->read((char*)param->quanParameter->index.data(), param->external[4]);
}
} else {
external->offset(param->external[0]);
param->weight.resize(param->external[1] / sizeof(float));
external->read((char*)param->weight.data(), param->external[1]);
param->bias.resize(param->external[2] / sizeof(float));
external->read((char*)param->bias.data(), param->external[2]);
}
break;
}
default:
break;
}
if (externalTmp) {
delete external;
}
builder.Finish(Op::Pack(builder, op.get()));
return true;
}
Execution* OpCommonUtils::createExecutionWithExternal(Backend* backend, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, FileLoader* externalFile, std::shared_ptr<BufferStorage>& tmpstore) {
bool hasExternal = false;
switch (op->main_type()) {
case OpParameter_Convolution2D:
hasExternal = USE_EXTERNAL_DATA(op->main_as_Convolution2D());
break;
case OpParameter_Scale:
hasExternal = USE_EXTERNAL_DATA(op->main_as_Scale());
break;
case OpParameter_LayerNorm:
hasExternal = USE_EXTERNAL_DATA(op->main_as_LayerNorm());
break;
default:
break;
}
if (!hasExternal) {
return backend->onCreate(inputs, outputs, op);
}
flatbuffers::FlatBufferBuilder builder;
bool res = _RebuildExternalOp(externalFile, op, builder);
if (!res) {
MNN_ERROR("Rebuild External Op failed\n");
return nullptr;
}
auto newOp = flatbuffers::GetRoot<MNN::Op>(builder.GetBufferPointer());
auto execution = backend->onCreate(inputs, outputs, newOp);
if (nullptr == execution) {
return execution;
}
if (op->main_type() == OpParameter_Convolution2D) {
Execution* copyExe = nullptr;
execution->onClone(backend, op, &copyExe);
if (nullptr != copyExe) {
delete execution;
return copyExe;
} else {
#ifdef DEBUG
MNN_ERROR("Clone error for convolution/deconvolution, will Increase memory\n");
#endif
tmpstore.reset(new BufferStorage);
tmpstore->storage = builder.ReleaseRaw(tmpstore->allocated_size, tmpstore->offset);
}
}
return execution;
}
void OpCommonUtils::loadExternalDatas(FileLoader* fileloader, std::vector<char*> addrs, const int64_t* external) {
fileloader->offset(external[0]);
for (int i = 0; i < addrs.size(); i++) {
fileloader->read(addrs[i], external[i+1]);
}
}
static void getBatchChannelArea(const Tensor* t, int& batch, int& channel, int& area) {
if (t->dimensions() == 0) {
batch = 1;
channel = 1;
area = 1;
return;
}
if (t->dimensions() == 1) {
batch = t->length(0);
channel = 1;
area = 1;
return;
}
batch = t->length(0);
channel = t->length(1);
area = 1;
for (int i=2; i<t->dimensions(); ++i) {
area *= t->length(i);
}
}
bool OpCommonUtils::isTranspose(const Tensor::InsideDescribe::Region& region, int& srcOne, int& dstOne) {
srcOne = -1;
dstOne = -1;
for (int i = 0; i < 3; i++) {
if (region.size[i] == 1) {
continue;
}
if (region.src.stride[i] == 1) {
if (srcOne >= 0) {
return false;
}
srcOne = i;
}
if (region.dst.stride[i] == 1) {
if (dstOne >= 0) {
return false;
}
dstOne = i;
}
}
return srcOne >= 0 && dstOne >= 0 && srcOne != dstOne;
}
bool OpCommonUtils::supportDynamicInputMemory(MNNForwardType type) {
if (type == MNN_FORWARD_OPENCL || type == MNN_FORWARD_VULKAN) {
return false;
}
return true;
}
void OpCommonUtils::turnRegion2Convert(const Tensor::InsideDescribe::Region& region, const Tensor* dest, OpCommonUtils::TensorConvertParameter& info) {
auto origin = region.origin;
auto srcFormat = TensorUtils::getDescribe(origin)->dimensionFormat;
auto dstFormat = TensorUtils::getDescribe(dest)->dimensionFormat;
info.type = 0;
if (srcFormat == dstFormat) {
return;
}
if (srcFormat != MNN_DATA_FORMAT_NC4HW4 && dstFormat != MNN_DATA_FORMAT_NC4HW4) {
return;
}
const Tensor* nc4hw4Tensor = origin;
const Tensor* originTensor = dest;
if (dstFormat == MNN_DATA_FORMAT_NC4HW4) {
nc4hw4Tensor = dest;
originTensor = origin;
}
getBatchChannelArea(nc4hw4Tensor, info.batch, info.channel, info.area);
if (0 != region.src.offset || 0 != region.dst.offset) {
return;
}
if (TensorUtils::isCopyRegion(region)) {
if (info.batch * info.channel * info.area == region.size[0] * region.size[1] * region.size[2]) {
info.type = 1;
return;
}
return;
}
int srcOne, dstOne;
if (isTranspose(region, srcOne, dstOne)) {
int keepDim = -1;
for (int i = 0; i < 3; i++) {
if (i != srcOne && i != dstOne) {
keepDim = i;
break;
}
}
if (info.batch == region.size[keepDim]) {
if ((info.channel == region.size[srcOne] && info.area == region.size[dstOne]) // NCHW
|| (info.area == region.size[srcOne] && info.channel == region.size[dstOne])) {// NHWC
auto srcSize = TensorUtils::getRawSize(originTensor);
auto dstSize = TensorUtils::getRawSize(nc4hw4Tensor);
auto regionSize = region.size[0] * region.size[1] * region.size[2];
if (srcSize != dstSize || regionSize != srcSize) {
return;
}
info.type = 2;
return;
}
return;
}
}
return;
}
bool OpCommonUtils::computeMatMulSize(bool transposeA, bool transposeB, const Tensor* A, const Tensor* B, int& e, int& l, int& h) {
auto i0Dim = A->dimensions();
auto i1Dim = B->dimensions();
if (i0Dim < 1 || i1Dim < 1) {
return false;
}
int w0, h0;
int w1, h1;
if (i0Dim == 1) {
w0 = A->length(0);
h0 = 1;
transposeA = false;
} else {
w0 = A->length(i0Dim - 1);
h0 = A->length(i0Dim - 2);
}
if (i1Dim == 1) {
w1 = 1;
h1 = B->length(0);
transposeB = false;
} else {
w1 = B->length(i1Dim - 1);
h1 = B->length(i1Dim - 2);
}
if (transposeA) {
auto t = w0;
w0 = h0;
h0 = t;
}
if (transposeB) {
auto t = w1;
w1 = h1;
h1 = t;
}
if (w0 != h1) {
return false;
}
e = h0;
l = w0;
h = w1;
return true;
}
DataType OpCommonUtils::convertDataType(halide_type_t type) {
if (type.code == halide_type_float) {
return DataType_DT_FLOAT;
}
if (type.code == halide_type_uint && type.bits == 8) {
return DataType_DT_UINT8;
}
if (type.code == halide_type_int && type.bits == 8) {
return DataType_DT_INT8;
}
if (type.code == halide_type_int && type.bits == 32) {
return DataType_DT_INT32;
}
return DataType_DT_INVALID;
}
} // namespace MNN