mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			105 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeArgMax.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include <vector>
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| class ArgMaxComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                const std::vector<Tensor *> &outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         // copy dims
 | |
|         auto &input       = inputs[0]->buffer();
 | |
|         auto &output      = outputs[0]->buffer();
 | |
|         output.dimensions = input.dimensions;
 | |
|         memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
 | |
| 
 | |
|         auto argMax = op->main_as_ArgMax();
 | |
| 
 | |
|         const auto inputDimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
| 
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = inputDimensionFormat;
 | |
| 
 | |
|         if (inputDimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
 | |
|             int axis = argMax->axis();
 | |
|             if(axis < 0){
 | |
|                 axis = input.dimensions + axis;
 | |
|             }
 | |
|             // reduce axis dimension
 | |
|             output.dimensions = input.dimensions - 1;
 | |
|             for (int i = 0, j = 0; i < input.dimensions; ++i) {
 | |
|                 if (i == axis) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 output.dim[j].extent = input.dim[i].extent;
 | |
|                 j++;
 | |
|             }
 | |
|             output.dim[input.dimensions - 1].extent = 0;
 | |
|             // set output data type to be INT(according to tensorflow implementation)
 | |
|             output.type = halide_type_of<int>();
 | |
|         } else {
 | |
|             if (argMax->axis() == 0) {
 | |
|                 // Legacy code
 | |
|                 // key extent
 | |
|                 // really legacy
 | |
|                 output.type = halide_type_of<float>();
 | |
|                 int keyExtent = argMax->topK();
 | |
|                 if (argMax->outMaxVal()) {
 | |
|                     keyExtent *= 2;
 | |
|                 }
 | |
| 
 | |
|                 if (input.dim[3].extent > 1) {
 | |
|                     output.dim[3].extent = keyExtent;
 | |
|                 } else if (input.dim[2].extent > 1) { // iw = ow = 1
 | |
|                     output.dim[2].extent = keyExtent;
 | |
|                 } else { // iw = ow = 1, ih = oh = 1;
 | |
|                     output.dim[1].extent = keyExtent;
 | |
|                 }
 | |
|             } else {
 | |
|                 TensorUtils::getDescribe(outputs[0])->dimensionFormat = inputDimensionFormat;
 | |
|                 output.type = halide_type_of<float>();
 | |
|                 int topK = argMax->topK();
 | |
|                 int axis = argMax->axis();
 | |
|                 // in caffe, axis may not exist, we set it to 10000 to indicate this situation
 | |
|                 // see file: tools/converter/source/caffe/ArgMax.cpp
 | |
|                 if (axis != 10000) {
 | |
|                     if (argMax->outMaxVal()) {
 | |
|                         output.dim[axis].extent = topK * 2;
 | |
|                     } else {
 | |
|                         output.dim[axis].extent = topK;
 | |
|                     }
 | |
|                 } else {
 | |
|                     std::vector<int> outputShape(input.dimensions, 1);
 | |
| 
 | |
|                     outputShape[0] = input.dim[0].extent;
 | |
|                     outputShape[2] = topK;
 | |
|                     if (argMax->outMaxVal()) {
 | |
|                         outputShape[1] = 2;
 | |
|                     }
 | |
| 
 | |
|                     for (int ii = 0; ii < outputShape.size(); ii++) {
 | |
|                         output.dim[ii].extent = outputShape[ii];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(ArgMaxComputer, OpType_ArgMax);
 | |
| REGISTER_SHAPE(ArgMaxComputer, OpType_ArgMin);
 | |
| 
 | |
| } // namespace MNN
 |