mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			51 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeDet.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| class DynamicQuantComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(outputs.size() == 3);
 | |
|         if (inputs.size() != 1) {
 | |
|             MNN_ERROR("DynamicQuant only accept 1 input\n");
 | |
|             return false;
 | |
|         }
 | |
|         auto input = inputs[0];
 | |
|         auto output = outputs[0];
 | |
|         int dimSize = input->dimensions();
 | |
|         output->buffer().dimensions = dimSize;
 | |
|         for (int i = 0; i < dimSize; ++i) {
 | |
|             output->buffer().dim[i].extent = input->buffer().dim[i].extent;
 | |
|         }
 | |
|         auto scale = outputs[1];
 | |
|         auto zeroPoint = outputs[2];
 | |
|         scale->buffer().dimensions = 1;
 | |
|         zeroPoint->buffer().dimensions = 1;
 | |
|         scale->buffer().dim[0].extent = 1;
 | |
|         zeroPoint->buffer().dim[0].extent = 1;
 | |
|         
 | |
|         TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         output->buffer().type = halide_type_of<int8_t>();
 | |
|         
 | |
|         TensorUtils::getDescribe(scale)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         scale->buffer().type = halide_type_of<float>();
 | |
|         
 | |
|         TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         zeroPoint->buffer().type = halide_type_of<float>();
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(DynamicQuantComputer, OpType_DynamicQuant);
 | |
| 
 | |
| } // namespace MNN
 |