mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			411 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  Tensor.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/07/06.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <complex.h>
 | |
| #include <string.h>
 | |
| #include <MNN/Tensor.hpp>
 | |
| #include "MNN_generated.h"
 | |
| #include "core/Backend.hpp"
 | |
| #include "core/MNNMemoryUtils.h"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace MNN {
 | |
| Tensor::Tensor(int dimSize, DimensionType type) {
 | |
|     MNN_ASSERT(dimSize <= MNN_MAX_TENSOR_DIM);
 | |
|     mDescribe          = new InsideDescribe;
 | |
|     mBuffer.dimensions = dimSize;
 | |
|     mBuffer.type       = halide_type_of<float>();
 | |
|     mBuffer.device     = 0;
 | |
|     mBuffer.host       = nullptr;
 | |
|     mBuffer.dim        = &mDescribe->dims[0];
 | |
| 
 | |
|     switch (type) {
 | |
|         case CAFFE:
 | |
|             mDescribe->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | |
|             break;
 | |
|         case TENSORFLOW:
 | |
|             mDescribe->dimensionFormat = MNN_DATA_FORMAT_NHWC;
 | |
|             break;
 | |
|         case CAFFE_C4:
 | |
|             mDescribe->dimensionFormat = MNN_DATA_FORMAT_NC4HW4;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| Tensor::Tensor(const Tensor* tensor, DimensionType type, bool allocMemory) {
 | |
|     MNN_ASSERT(tensor != nullptr);
 | |
| 
 | |
|     auto buffer        = tensor->buffer();
 | |
|     mDescribe          = new InsideDescribe;
 | |
|     mBuffer.dimensions = buffer.dimensions;
 | |
|     mBuffer.type       = buffer.type;
 | |
|     mBuffer.device     = 0;
 | |
|     mBuffer.host       = nullptr;
 | |
|     mBuffer.dim        = &mDescribe->dims[0];
 | |
| 
 | |
|     for (int i = 0; i < buffer.dimensions; ++i) {
 | |
|         mBuffer.dim[i].extent = buffer.dim[i].extent;
 | |
|     }
 | |
|     switch (type) {
 | |
|         case CAFFE:
 | |
|             mDescribe->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | |
|             break;
 | |
|         case TENSORFLOW:
 | |
|             mDescribe->dimensionFormat = MNN_DATA_FORMAT_NHWC;
 | |
|             break;
 | |
|         case CAFFE_C4:
 | |
|             mDescribe->dimensionFormat = MNN_DATA_FORMAT_NC4HW4;
 | |
|             type                       = CAFFE;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     // format mapping
 | |
|     auto originType = tensor->getDimensionType();
 | |
|     if (originType != type && buffer.dimensions >= 4) {
 | |
|         std::vector<int> axisMap;
 | |
|         // NCHW -> NHWC
 | |
|         if (originType == CAFFE) {
 | |
|             axisMap.push_back(0);
 | |
|             for (int i = 2; i < buffer.dimensions; ++i) {
 | |
|                 axisMap.push_back(i);
 | |
|             }
 | |
|             axisMap.push_back(1);
 | |
|         }
 | |
|         // NHWC -> NCHW
 | |
|         else {
 | |
|             axisMap.push_back(0);
 | |
|             axisMap.push_back(buffer.dimensions - 1);
 | |
|             for (int i = 1; i < buffer.dimensions - 1; ++i) {
 | |
|                 axisMap.push_back(i);
 | |
|             }
 | |
|         }
 | |
|         for (int i = 0; i < buffer.dimensions; ++i) {
 | |
|             mBuffer.dim[i].extent = buffer.dim[axisMap[i]].extent;
 | |
|         }
 | |
|     }
 | |
|     TensorUtils::setLinearLayout(this);
 | |
| 
 | |
|     if (allocMemory) {
 | |
|         auto memorySize = size();
 | |
|         if (memorySize > 0) {
 | |
|             mDescribe->memoryType = Tensor::InsideDescribe::MEMORY_HOST;
 | |
|             mBuffer.host          = (uint8_t*)MNNMemoryAllocAlign(size(), MNN_MEMORY_ALIGN_DEFAULT);
 | |
|             MNN_ASSERT(mBuffer.host != nullptr);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| Tensor::~Tensor() {
 | |
|     if (mBuffer.type.code == halide_type_handle) {
 | |
|         auto handles = (void**)mBuffer.host;
 | |
|         for (int i = 0; i < elementSize(); ++i) {
 | |
|             if (nullptr != handles[i]) {
 | |
|                 mDescribe->extra.handleFreeFunction(handles[i]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (mDescribe->memoryType == InsideDescribe::MEMORY_HOST) {
 | |
|         if (nullptr != mBuffer.host) {
 | |
|             MNNMemoryFreeAlign(mBuffer.host);
 | |
|         }
 | |
|     }
 | |
|     delete mDescribe;
 | |
| }
 | |
| 
 | |
| Tensor* Tensor::createDevice(const std::vector<int>& dims, halide_type_t type, DimensionType dimType) {
 | |
|     auto shapeTensor = new Tensor((int)dims.size(), dimType);
 | |
|     for (int i = 0; i < dims.size(); ++i) {
 | |
|         shapeTensor->setLength(i, dims[i]);
 | |
|     }
 | |
|     shapeTensor->buffer().type = type;
 | |
|     TensorUtils::setLinearLayout(shapeTensor);
 | |
|     return shapeTensor;
 | |
| }
 | |
| 
 | |
| Tensor* Tensor::create(const std::vector<int>& dims, halide_type_t type, void* userData, DimensionType dimType) {
 | |
|     Tensor shapeTensor((int)dims.size(), dimType);
 | |
|     for (int i = 0; i < dims.size(); ++i) {
 | |
|         shapeTensor.setLength(i, dims[i]);
 | |
|     }
 | |
|     shapeTensor.buffer().type = type;
 | |
| 
 | |
|     bool ownData = userData == nullptr;
 | |
|     auto result  = new Tensor(&shapeTensor, dimType, ownData);
 | |
|     if (nullptr != userData) {
 | |
|         result->buffer().host = (uint8_t*)userData;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| bool Tensor::copyFromHostTensor(const Tensor* hostTensor) {
 | |
|     auto bn = mDescribe->backend;
 | |
|     if (nullptr == bn) {
 | |
|         return false;
 | |
|     }
 | |
|     bn->onCopyBuffer(hostTensor, this);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool Tensor::copyToHostTensor(Tensor* hostTensor) const {
 | |
|     auto bn = mDescribe->backend;
 | |
|     if (nullptr == bn) {
 | |
|         return false;
 | |
|     }
 | |
|     bn->onCopyBuffer(this, hostTensor);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static Tensor::DimensionType getDimType(const Tensor* origin) {
 | |
|     auto dimformat = TensorUtils::getDescribe(origin)->dimensionFormat;
 | |
|     switch (dimformat) {
 | |
|         case MNN_DATA_FORMAT_NHWC:
 | |
|             return Tensor::TENSORFLOW;
 | |
|         case MNN_DATA_FORMAT_NCHW:
 | |
|             return Tensor::CAFFE;
 | |
|         case MNN_DATA_FORMAT_NC4HW4:
 | |
|             return Tensor::CAFFE_C4;
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     return Tensor::CAFFE;
 | |
| }
 | |
| 
 | |
| Tensor* Tensor::createHostTensorFromDevice(const Tensor* device, bool copyContent) {
 | |
|     auto tensor = Tensor::create(device->shape(), device->getType(), nullptr, getDimType(device));
 | |
|     if (copyContent) {
 | |
|         device->copyToHostTensor(tensor);
 | |
|     }
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| Tensor::DimensionType Tensor::getDimensionType() const {
 | |
|     if (mDescribe->dimensionFormat == MNN_DATA_FORMAT_NHWC) {
 | |
|         return Tensor::TENSORFLOW;
 | |
|     }
 | |
|     return Tensor::CAFFE;
 | |
| }
 | |
| 
 | |
| Tensor::HandleDataType Tensor::getHandleDataType() const {
 | |
|     if (halide_type_handle != mBuffer.type.code) {
 | |
|         return HANDLE_NONE;
 | |
|     }
 | |
|     return HANDLE_STRING;
 | |
| }
 | |
| void Tensor::setType(int type) {
 | |
|     switch (type) {
 | |
|         case DataType_DT_DOUBLE:
 | |
|         case DataType_DT_FLOAT:
 | |
|             mBuffer.type = halide_type_of<float>();
 | |
|             break;
 | |
|         case DataType_DT_BFLOAT16:
 | |
|             mBuffer.type = halide_type_t(halide_type_float, 16);
 | |
|             break;
 | |
|         case DataType_DT_QINT32:
 | |
|         case DataType_DT_INT32:
 | |
|         case DataType_DT_BOOL:
 | |
|         case DataType_DT_INT64:
 | |
|             mBuffer.type = halide_type_of<int32_t>();
 | |
|             break;
 | |
|         case DataType_DT_QINT8:
 | |
|         case DataType_DT_INT8:
 | |
|             mBuffer.type = halide_type_of<int8_t>();
 | |
|             break;
 | |
|         case DataType_DT_QUINT8:
 | |
|         case DataType_DT_UINT8:
 | |
|             mBuffer.type = halide_type_of<uint8_t>();
 | |
|             break;
 | |
|         case DataType_DT_QUINT16:
 | |
|         case DataType_DT_UINT16:
 | |
|             mBuffer.type = halide_type_of<uint16_t>();
 | |
|             break;
 | |
|         case DataType_DT_QINT16:
 | |
|         case DataType_DT_INT16:
 | |
|             mBuffer.type = halide_type_of<int16_t>();
 | |
|             break;
 | |
|         case DataType_DT_STRING:
 | |
|             mBuffer.type                  = halide_type_t(halide_type_handle, sizeof(void*) * 8);
 | |
|             mDescribe->extra.handleFreeFunction = (void (*)(void*))::free;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             MNN_PRINT("Unsupported data type!");
 | |
|             MNN_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::vector<int> Tensor::shape() const {
 | |
|     std::vector<int> result;
 | |
|     for (int i = 0; i < mBuffer.dimensions; ++i) {
 | |
|         result.push_back(mBuffer.dim[i].extent);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| template <typename T>
 | |
| void printData(const Tensor* tensor, const void* data, const char* fmt) {
 | |
|     const T* buffer = (const T*)data;
 | |
|     if (tensor->dimensions() != 4) {
 | |
|         auto size = tensor->elementSize();
 | |
|         for (int i = 0; i < size; i++) {
 | |
|             MNN_PRINT(fmt, buffer[i]);
 | |
|         }
 | |
|         MNN_PRINT("\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     auto tf      = tensor->getDimensionType() == Tensor::TENSORFLOW;
 | |
|     auto batch   = tensor->batch();
 | |
|     auto channel = tensor->channel();
 | |
|     auto height  = tensor->height();
 | |
|     auto width   = tensor->width();
 | |
| 
 | |
|     auto unit = sizeof(T);
 | |
|     if (tf) {
 | |
|         auto bytesPerRow   = channel * unit;
 | |
|         auto bytesPerImage = width * bytesPerRow;
 | |
|         auto bytesPerBatch = height * bytesPerImage;
 | |
| 
 | |
|         for (int b = 0; b < batch; b++) {
 | |
|             auto bytes = buffer + b * bytesPerBatch / unit;
 | |
|             MNN_PRINT("batch %d:\n", b);
 | |
| 
 | |
|             for (int h = 0; h < height; h++) {
 | |
|                 for (int w = 0; w < width; w++) {
 | |
|                     for (int c = 0; c < channel; c++) {
 | |
|                         MNN_PRINT(fmt, bytes[h * width * channel + w * channel + c]);
 | |
|                     }
 | |
|                     MNN_PRINT("\n");
 | |
|                 }
 | |
|                 MNN_PRINT("--------------\n");
 | |
|             }
 | |
|         }
 | |
|     } else if (TensorUtils::getDescribe(tensor)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) { // NC/4HW4
 | |
|         auto components    = 4;
 | |
|         auto bytesPerRow   = width * components * unit;
 | |
|         auto bytesPerImage = height * bytesPerRow;
 | |
|         auto bytesPerBatch = UP_DIV(channel, 4) * bytesPerImage;
 | |
| 
 | |
|         for (int b = 0; b < batch; b++) {
 | |
|             auto bytes = buffer + b * bytesPerBatch / unit;
 | |
|             MNN_PRINT("batch %d:\n", b);
 | |
| 
 | |
|             for (int c = 0; c < channel; c++) {
 | |
|                 for (int h = 0; h < height; h++) {
 | |
|                     for (int w = 0; w < width; w++) {
 | |
|                         auto n = c / components, r = c % components;
 | |
|                         MNN_PRINT(fmt, bytes[(n * width * height + h * width + w) * components + r]);
 | |
|                     }
 | |
|                     MNN_PRINT("\n");
 | |
|                 }
 | |
|                 MNN_PRINT("--------------\n");
 | |
|             }
 | |
|         }
 | |
|     } else { // NCHW
 | |
|         auto bytesPerRow   = width * unit;
 | |
|         auto bytesPerImage = height * bytesPerRow;
 | |
|         auto bytesPerBatch = channel * bytesPerImage;
 | |
| 
 | |
|         for (int b = 0; b < batch; b++) {
 | |
|             auto bytes = buffer + b * bytesPerBatch / unit;
 | |
|             MNN_PRINT("batch %d:\n", b);
 | |
| 
 | |
|             for (int c = 0; c < channel; c++) {
 | |
|                 for (int h = 0; h < height; h++) {
 | |
|                     for (int w = 0; w < width; w++) {
 | |
|                         MNN_PRINT(fmt, bytes[c * width * height + h * width + w]);
 | |
|                     }
 | |
|                     MNN_PRINT("\n");
 | |
|                 }
 | |
|                 MNN_PRINT("--------------\n");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| void Tensor::print() const {
 | |
|     // print dimensions
 | |
|     MNN_PRINT("====== Tensor %p ======", this);
 | |
|     MNN_PRINT("\nDimension: ");
 | |
|     for (int i = 0; i < mBuffer.dimensions; i++) {
 | |
|         MNN_PRINT("%d, ", mBuffer.dim[i].extent);
 | |
|     }
 | |
| 
 | |
|     // convert to host if needed
 | |
|     auto printee = this;
 | |
|     bool device  = this->buffer().host == NULL && this->buffer().device != 0;
 | |
|     if (device) {
 | |
|         printee = this->createHostTensorFromDevice(this, true);
 | |
|     }
 | |
|     auto buffer = printee->buffer().host;
 | |
| 
 | |
|     MNN_PRINT("\nData: ");
 | |
|     if (printee->getType().code == halide_type_int) {
 | |
|         if (printee->getType().bits == 8) { // int8
 | |
|             printData<int8_t>(printee, buffer, "%d, ");
 | |
|         } else if (printee->getType().bits == 16) { // int16
 | |
|             printData<int16_t>(printee, buffer, "%d, ");
 | |
|         } else if (printee->getType().bits == 32) { // int32
 | |
|             printData<int32_t>(printee, buffer, "%d, ");
 | |
|         } else {
 | |
|             MNN_PRINT("\nunsupported data type");
 | |
|         }
 | |
|     } else if (printee->getType().code == halide_type_uint) {
 | |
|         if (printee->getType().bits == 8) { // uint8
 | |
|             printData<uint8_t>(printee, buffer, "%d, ");
 | |
|         } else {
 | |
|             MNN_PRINT("\nunsupported data type");
 | |
|         }
 | |
|     } else if (printee->getType().code == halide_type_float) {
 | |
|         if (printee->getType().bits == 32) { // float32
 | |
|             printData<float>(printee, buffer, "%f, ");
 | |
|         } else {
 | |
|             MNN_PRINT("\nunsupported data type\n");
 | |
|         }
 | |
|     } else {
 | |
|         MNN_PRINT("\nunsupported data type");
 | |
|     }
 | |
| 
 | |
|     // clean up
 | |
|     if (printee != this) {
 | |
|         delete printee;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Tensor::printShape() const {
 | |
|     const int dims = this->dimensions();
 | |
|     MNN_PRINT("\t**Tensor shape**: ");
 | |
|     if (dims == 0) {
 | |
|         MNN_PRINT("\t*Scalar*");
 | |
|     }
 | |
|     for (int i = 0; i < dims; ++i) {
 | |
|         MNN_PRINT("%d, ", this->length(i));
 | |
|     }
 | |
|     MNN_PRINT("\n");
 | |
| }
 | |
| 
 | |
| int Tensor::size() const {
 | |
|     auto dataSize = mBuffer.type.bytes();
 | |
|     MNN_ASSERT(dataSize >= 1);
 | |
|     for (int i = 0; i < this->buffer().dimensions; i++) {
 | |
|         int currentDimSize = mBuffer.dim[i].extent;
 | |
|         if (mDescribe->dimensionFormat == MNN_DATA_FORMAT_NC4HW4 && 1 == i) {
 | |
|             currentDimSize = ALIGN_UP4(currentDimSize);
 | |
|         }
 | |
|         dataSize *= currentDimSize;
 | |
|     }
 | |
|     return dataSize;
 | |
| }
 | |
| 
 | |
| } // namespace MNN
 |