mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			148 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  WrapExecution.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/09/03.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "core/WrapExecution.hpp"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| WrapExecution::WrapExecution(Backend* CPUBackend, std::shared_ptr<Execution> execution, bool isStatic)
 | |
|     : Execution(execution->backend()), mCPUBackend(CPUBackend), mExecution(execution) {
 | |
|     mValid  = execution->valid();
 | |
|     mStatic = isStatic;
 | |
| }
 | |
| 
 | |
| Tensor* WrapExecution::_getCopyTensor(Tensor* inputTensor) {
 | |
|     auto dstBackend = mExecution->backend();
 | |
|     auto inputDes   = TensorUtils::getDescribe(inputTensor);
 | |
|     auto srcBackend = inputDes->backend;
 | |
|     if (nullptr == srcBackend) {
 | |
|         srcBackend = mCPUBackend;
 | |
|     }
 | |
|     // CPU -> CPU or XPU -> XPU
 | |
|     if (srcBackend == dstBackend) {
 | |
|         return inputTensor;
 | |
|     }
 | |
|     auto iter = mInputMaps.find(inputTensor);
 | |
|     if (iter != mInputMaps.end()) {
 | |
|         return std::get<2>(iter->second).get();
 | |
|     }
 | |
|     // CPU -> XPU
 | |
|     if (srcBackend == mCPUBackend) {
 | |
|         std::shared_ptr<Tensor> wrapTensor(new Tensor);
 | |
|         TensorUtils::copyShape(inputTensor, wrapTensor.get(), true);
 | |
|         wrapTensor->buffer().type = inputTensor->buffer().type;
 | |
|         mInputMaps.insert(std::make_pair(inputTensor, std::make_tuple(dstBackend, dstBackend, wrapTensor)));
 | |
|         return wrapTensor.get();
 | |
|     }
 | |
|     // XPU -> CPU
 | |
|     if (dstBackend == mCPUBackend) {
 | |
|         std::shared_ptr<Tensor> wrapTensor(new Tensor);
 | |
|         TensorUtils::copyShape(inputTensor, wrapTensor.get(), true);
 | |
|         wrapTensor->buffer().type = inputTensor->buffer().type;
 | |
|         mInputMaps.insert(std::make_pair(inputTensor, std::make_tuple(mCPUBackend, srcBackend, wrapTensor)));
 | |
|         return wrapTensor.get();
 | |
|     }
 | |
|     // XPU -> CPU -> XPU'
 | |
|     std::shared_ptr<Tensor> midTensor(new Tensor);
 | |
|     std::shared_ptr<Tensor> wrapTensor(new Tensor);
 | |
|     TensorUtils::copyShape(inputTensor, midTensor.get(), true);
 | |
|     TensorUtils::copyShape(inputTensor, wrapTensor.get(), true);
 | |
|     TensorUtils::getDescribe(midTensor.get())->usage = TensorUtils::getDescribe(inputTensor)->usage;
 | |
|     midTensor->buffer().type                         = inputTensor->buffer().type;
 | |
|     wrapTensor->buffer().type                        = inputTensor->buffer().type;
 | |
|     mInputMaps.insert(std::make_pair(inputTensor, std::make_tuple(mCPUBackend, srcBackend, midTensor)));
 | |
|     mInputMaps.insert(std::make_pair(midTensor.get(), std::make_tuple(dstBackend, dstBackend, wrapTensor)));
 | |
|     return wrapTensor.get();
 | |
| }
 | |
| 
 | |
| ErrorCode WrapExecution::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     mWrapInputTensors.resize(inputs.size());
 | |
|     mInputMaps.clear();
 | |
| 
 | |
|     auto dstBackend = mExecution->backend();
 | |
|     for (int i = 0; i < inputs.size(); ++i) {
 | |
|         auto inputTensor = inputs[i];
 | |
|         auto des         = TensorUtils::getDescribe(inputTensor);
 | |
|         if (des->memoryType == Tensor::InsideDescribe::MEMORY_VIRTUAL) {
 | |
|             MNN_ASSERT(inputs.size() == 1);
 | |
|             mWrapForRaster.reset(new Tensor);
 | |
|             TensorUtils::copyShape(inputTensor, mWrapForRaster.get(), true);
 | |
|             mWrapForRaster->buffer().type = inputTensor->buffer().type;
 | |
|             auto wrapDes                  = TensorUtils::getDescribe(mWrapForRaster.get());
 | |
|             wrapDes->memoryType           = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|             wrapDes->regions              = des->regions;
 | |
|             for (auto& r : wrapDes->regions) {
 | |
|                 r.origin = _getCopyTensor(r.origin);
 | |
|             }
 | |
|             mWrapInputTensors[i] = mWrapForRaster.get();
 | |
|         } else {
 | |
|             mWrapInputTensors[i] = _getCopyTensor(inputTensor);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < outputs.size(); ++i) {
 | |
|         MNN_ASSERT(TensorUtils::getDescribe(outputs[i])->backend == dstBackend);
 | |
|     }
 | |
|     bool memoryAllocSuccess = true;
 | |
|     // acquire memory, copy const tensors
 | |
|     for (auto& iter : mInputMaps) {
 | |
|         auto backend   = std::get<0>(iter.second);
 | |
|         auto converter = std::get<1>(iter.second);
 | |
|         auto src       = iter.first;
 | |
|         auto dst       = std::get<2>(iter.second).get();
 | |
| 
 | |
|         if (TensorUtils::getDescribe(src)->usage == TensorUsage::CONSTANT && mStatic) {
 | |
|             memoryAllocSuccess = backend->onAcquireBuffer(dst, Backend::DYNAMIC_SEPERATE);
 | |
|             if (memoryAllocSuccess) {
 | |
|                 converter->onCopyBuffer(src, dst);
 | |
|                 TensorUtils::getDescribe(dst)->usage = TensorUtils::getDescribe(src)->usage;
 | |
|             }
 | |
|         } else {
 | |
|             memoryAllocSuccess = backend->onAcquireBuffer(dst, Backend::DYNAMIC);
 | |
|         }
 | |
|     }
 | |
|     if (!memoryAllocSuccess) {
 | |
|         return OUT_OF_MEMORY;
 | |
|     }
 | |
| 
 | |
|     // do resize
 | |
|     auto result = mExecution->onResize(mWrapInputTensors, outputs);
 | |
| 
 | |
|     // release memory
 | |
|     for (auto& iter : mInputMaps) {
 | |
|         auto backend = std::get<0>(iter.second);
 | |
|         auto dst     = std::get<2>(iter.second).get();
 | |
| 
 | |
|         if (TensorUtils::getDescribe(dst)->usage == TensorUsage::CONSTANT && mStatic) {
 | |
|             backend->onReleaseBuffer(dst, Backend::DYNAMIC_SEPERATE);
 | |
|         } else {
 | |
|             backend->onReleaseBuffer(dst, Backend::DYNAMIC);
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ErrorCode WrapExecution::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     MNN_ASSERT(mWrapInputTensors.size() == inputs.size());
 | |
| 
 | |
|     // copy variant tensors
 | |
|     for (auto& iter : mInputMaps) {
 | |
|         auto converter = std::get<1>(iter.second);
 | |
|         auto src       = iter.first;
 | |
|         auto dst       = std::get<2>(iter.second).get();
 | |
|         if (TensorUtils::getDescribe(src)->usage != TensorUsage::CONSTANT || (!mStatic)) {
 | |
|             converter->onCopyBuffer(src, dst);
 | |
|         }
 | |
|     }
 | |
|     auto code = mExecution->onExecute(mWrapInputTensors, outputs);
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| } // namespace MNN
 |