MNN/demo/exec/pictureRecognition.cpp

162 lines
5.4 KiB
C++

//
// pictureRecognition.cpp
// MNN
//
// Created by MNN on 2018/05/14.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <stdio.h>
#include <MNN/ImageProcess.hpp>
#include <MNN/Interpreter.hpp>
#define MNN_OPEN_TIME_TRACE
#include <algorithm>
#include <fstream>
#include <functional>
#include <memory>
#include <sstream>
#include <vector>
#include <MNN/AutoTime.hpp>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include "stb_image_write.h"
using namespace MNN;
using namespace MNN::CV;
int main(int argc, const char* argv[]) {
if (argc < 3) {
MNN_PRINT("Usage: ./pictureTest.out model.mnn input.jpg [word.txt]\n");
return 0;
}
std::shared_ptr<Interpreter> net(Interpreter::createFromFile(argv[1]));
ScheduleConfig config;
config.type = MNN_FORWARD_AUTO;
// BackendConfig bnconfig;
// bnconfig.precision = BackendConfig::Precision_Low;
// config.backendConfig = &bnconfig;
auto session = net->createSession(config);
auto input = net->getSessionInput(session, NULL);
auto shape = input->shape();
shape[0] = 1;
net->resizeTensor(input, shape);
net->resizeSession(session);
auto output = net->getSessionOutput(session, NULL);
std::vector<std::string> words;
if (argc >= 4) {
std::ifstream inputOs(argv[3]);
std::string line;
while (std::getline(inputOs, line)) {
words.emplace_back(line);
}
}
{
auto dims = input->shape();
int inputDim = 0;
int size_w = 0;
int size_h = 0;
int bpp = 0;
bpp = input->channel();
size_h = input->height();
size_w = input->width();
if (bpp == 0)
bpp = 1;
if (size_h == 0)
size_h = 1;
if (size_w == 0)
size_w = 1;
MNN_PRINT("input: w:%d , h:%d, bpp: %d\n", size_w, size_h, bpp);
auto inputPatch = argv[2];
int width, height, channel;
auto inputImage = stbi_load(inputPatch, &width, &height, &channel, 4);
if (nullptr == inputImage) {
MNN_ERROR("Can't open %s\n", inputPatch);
return 0;
}
MNN_PRINT("origin size: %d, %d\n", width, height);
Matrix trans;
// Set transform, from dst scale to src, the ways below are both ok
#ifdef USE_MAP_POINT
float srcPoints[] = {
0.0f, 0.0f,
0.0f, (float)(height-1),
(float)(width-1), 0.0f,
(float)(width-1), (float)(height-1),
};
float dstPoints[] = {
0.0f, 0.0f,
0.0f, (float)(size_h-1),
(float)(size_w-1), 0.0f,
(float)(size_w-1), (float)(size_h-1),
};
trans.setPolyToPoly((Point*)dstPoints, (Point*)srcPoints, 4);
#else
trans.setScale((float)(width-1) / (size_w-1), (float)(height-1) / (size_h-1));
#endif
ImageProcess::Config config;
config.filterType = BILINEAR;
float mean[3] = {103.94f, 116.78f, 123.68f};
float normals[3] = {0.017f, 0.017f, 0.017f};
// float mean[3] = {127.5f, 127.5f, 127.5f};
// float normals[3] = {0.00785f, 0.00785f, 0.00785f};
::memcpy(config.mean, mean, sizeof(mean));
::memcpy(config.normal, normals, sizeof(normals));
config.sourceFormat = RGBA;
config.destFormat = BGR;
std::shared_ptr<ImageProcess> pretreat(ImageProcess::create(config));
pretreat->setMatrix(trans);
pretreat->convert((uint8_t*)inputImage, width, height, 0, input);
stbi_image_free(inputImage);
}
net->runSession(session);
{
auto dimType = output->getDimensionType();
if (output->getType().code != halide_type_float) {
dimType = Tensor::TENSORFLOW;
}
std::shared_ptr<Tensor> outputUser(new Tensor(output, dimType));
MNN_PRINT("output size:%d\n", outputUser->elementSize());
output->copyToHostTensor(outputUser.get());
auto type = outputUser->getType();
auto size = outputUser->elementSize();
std::vector<std::pair<int, float>> tempValues(size);
if (type.code == halide_type_float) {
auto values = outputUser->host<float>();
for (int i = 0; i < size; ++i) {
tempValues[i] = std::make_pair(i, values[i]);
}
}
if (type.code == halide_type_uint && type.bytes() == 1) {
auto values = outputUser->host<uint8_t>();
for (int i = 0; i < size; ++i) {
tempValues[i] = std::make_pair(i, values[i]);
}
}
if (type.code == halide_type_int && type.bytes() == 1) {
auto values = outputUser->host<int8_t>();
for (int i = 0; i < size; ++i) {
tempValues[i] = std::make_pair(i, values[i]);
}
}
// Find Max
std::sort(tempValues.begin(), tempValues.end(),
[](std::pair<int, float> a, std::pair<int, float> b) { return a.second > b.second; });
int length = size > 10 ? 10 : size;
if (words.empty()) {
for (int i = 0; i < length; ++i) {
MNN_PRINT("%d, %f\n", tempValues[i].first, tempValues[i].second);
}
} else {
for (int i = 0; i < length; ++i) {
MNN_PRINT("%s: %f\n", words[tempValues[i].first].c_str(), tempValues[i].second);
}
}
}
return 0;
}