mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			131 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  segment.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/07/01.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <MNN/ImageProcess.hpp>
 | |
| #define MNN_OPEN_TIME_TRACE
 | |
| #include <algorithm>
 | |
| #include <fstream>
 | |
| #include <functional>
 | |
| #include <memory>
 | |
| #include <sstream>
 | |
| #include <vector>
 | |
| #include <MNN/expr/Expr.hpp>
 | |
| #include <MNN/expr/ExprCreator.hpp>
 | |
| #include <MNN/AutoTime.hpp>
 | |
| #include <MNN/Interpreter.hpp>
 | |
| #define STB_IMAGE_IMPLEMENTATION
 | |
| #include "stb_image.h"
 | |
| #define STB_IMAGE_WRITE_IMPLEMENTATION
 | |
| #include "stb_image_write.h"
 | |
| 
 | |
| using namespace MNN;
 | |
| using namespace MNN::CV;
 | |
| using namespace MNN::Express;
 | |
| 
 | |
| int main(int argc, const char* argv[]) {
 | |
|     if (argc < 4) {
 | |
|         MNN_PRINT("Usage: ./segment.out model.mnn input.jpg output.jpg\n");
 | |
|         return 0;
 | |
|     }
 | |
|     std::shared_ptr<Interpreter> net;
 | |
|     net.reset(Interpreter::createFromFile(argv[1]));
 | |
|     if (net == nullptr) {
 | |
|         MNN_ERROR("Invalid Model\n");
 | |
|         return 0;
 | |
|     }
 | |
|     ScheduleConfig config;
 | |
|     auto session = net->createSession(config);
 | |
|     auto input = net->getSessionInput(session, nullptr);
 | |
|     auto shape = input->shape();
 | |
|     if (shape[0] != 1) {
 | |
|         shape[0] = 1;
 | |
|         net->resizeTensor(input, shape);
 | |
|         net->resizeSession(session);
 | |
|     }
 | |
|     {
 | |
|         int size_w   = 0;
 | |
|         int size_h   = 0;
 | |
|         int bpp      = 0;
 | |
|         bpp = shape[1];
 | |
|         size_h = shape[2];
 | |
|         size_w = shape[3];
 | |
|         if (bpp == 0)
 | |
|             bpp = 1;
 | |
|         if (size_h == 0)
 | |
|             size_h = 1;
 | |
|         if (size_w == 0)
 | |
|             size_w = 1;
 | |
|         MNN_PRINT("input: w:%d , h:%d, bpp: %d\n", size_w, size_h, bpp);
 | |
| 
 | |
|         auto inputPatch = argv[2];
 | |
|         int width, height, channel;
 | |
|         auto inputImage = stbi_load(inputPatch, &width, &height, &channel, 4);
 | |
|         if (nullptr == inputImage) {
 | |
|             MNN_ERROR("Can't open %s\n", inputPatch);
 | |
|             return 0;
 | |
|         }
 | |
|         MNN_PRINT("origin size: %d, %d\n", width, height);
 | |
|         Matrix trans;
 | |
|         // Set scale, from dst scale to src
 | |
|         trans.setScale((float)(width-1) / (size_w-1), (float)(height-1) / (size_h-1));
 | |
|         ImageProcess::Config config;
 | |
|         config.filterType = CV::BILINEAR;
 | |
|         //        float mean[3]     = {103.94f, 116.78f, 123.68f};
 | |
|         //        float normals[3] = {0.017f, 0.017f, 0.017f};
 | |
|         float mean[3]     = {127.5f, 127.5f, 127.5f};
 | |
|         float normals[3] = {0.00785f, 0.00785f, 0.00785f};
 | |
|         ::memcpy(config.mean, mean, sizeof(mean));
 | |
|         ::memcpy(config.normal, normals, sizeof(normals));
 | |
|         config.sourceFormat = RGBA;
 | |
|         config.destFormat   = RGB;
 | |
| 
 | |
|         std::shared_ptr<ImageProcess> pretreat(ImageProcess::create(config));
 | |
|         pretreat->setMatrix(trans);
 | |
|         pretreat->convert((uint8_t*)inputImage, width, height, 0, input->host<float>(), size_w, size_h, 4, 0, halide_type_of<float>());
 | |
|         stbi_image_free(inputImage);
 | |
|     }
 | |
|     // Run model
 | |
|     net->runSession(session);
 | |
| 
 | |
|     // Post treat by MNN-Express
 | |
|     {
 | |
|         /* Create VARP by tensor Begin*/
 | |
|         auto outputTensor = net->getSessionOutput(session, nullptr);
 | |
|         // First Create a Expr, then create Variable by the 0 index of expr
 | |
|         auto output = Variable::create(Expr::create(outputTensor));
 | |
|         if (nullptr == output->getInfo()) {
 | |
|             MNN_ERROR("Alloc memory or compute size error\n");
 | |
|             return 0;
 | |
|         }
 | |
|         /* Create VARP by tensor End*/
 | |
| 
 | |
|         // Turn dataFormat to NHWC for easy to run TopKV2
 | |
|         output = _Convert(output, NHWC);
 | |
|         auto width = output->getInfo()->dim[2];
 | |
|         auto height = output->getInfo()->dim[1];
 | |
|         auto channel = output->getInfo()->dim[3];
 | |
|         MNN_PRINT("output w = %d, h=%d\n", width, height);
 | |
| 
 | |
|         const int humanIndex = 15;
 | |
|         output = _Reshape(output, {-1, channel});
 | |
|         auto kv = _TopKV2(output, _Scalar<int>(1));
 | |
|         // Use indice in TopKV2's C axis
 | |
|         auto index = kv[1];
 | |
|         // If is human, set 255, else set 0
 | |
|         auto mask = _Select(_Equal(index, _Scalar<int>(humanIndex)), _Scalar<int>(255), _Scalar<int>(0));
 | |
| 
 | |
|         //If need faster, use this code
 | |
|         //auto mask = _Equal(index, _Scalar<int>(humanIndex)) * _Scalar<int>(255);
 | |
| 
 | |
|         mask = _Cast<uint8_t>(mask);
 | |
|         stbi_write_png(argv[3], width, height, 1, mask->readMap<uint8_t>(), width);
 | |
|     }
 | |
|     return 0;
 | |
| }
 |