MNN/source/backend/cpu/CPUMatMul.cpp

358 lines
14 KiB
C++

//
// CPUMatMul.cpp
// MNN
//
// Created by MNN on 2018/08/06.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUMatMul.hpp"
#include "CPUBackend.hpp"
#include "math/Matrix.hpp"
#include "compute/CommonOptFunction.h"
#include "core/Macro.h"
#include "core/Concurrency.h"
#include "core/AutoStorage.h"
#include "math/Vec.hpp"
#include <limits>
using Vec4 = MNN::Math::Vec<float, 4>;
namespace MNN {
CPUMatMul::CPUMatMul(Backend* backend, bool transposeA, bool transposeB, bool multiThread)
: Execution(backend), mTransposeA(transposeA), mTransposeB(transposeB), mSupportMultiThread(multiThread) {
mComputer.reset(new StrassenMatrixComputor(backend, mSupportMultiThread, 5));
}
void CPUMatMul::_scheduleForVecE(float* C, const float* biasPtr, int e, int l, int h) {
int numberThread = mSupportMultiThread ? static_cast<CPUBackend*>(backend())->threadNumber() : 1;
MNN_ASSERT(e == 1);
MatMulParam param;
param.e = 1;
param.l = l;
param.h = h;
param.BTranspose = mTransposeB;
param.numberThread = numberThread;
mPostFunctions.emplace_back(std::make_pair([param, biasPtr](
int tId, const float* A, const float* B, float* C) {
MNNComputeMatMulForE_1(A, B, C, biasPtr, &param, tId);
}, numberThread));
}
void CPUMatMul::_scheduleForVec(float* C, const float* biasPtr, int e, int l, int h) {
int numberThread = mSupportMultiThread ? static_cast<CPUBackend*>(backend())->threadNumber() : 1;
// TODD: Support e = 1
MNN_ASSERT(h == 1);
float biasValue = 0.0f;
if (nullptr != biasPtr) {
biasValue = *biasPtr;
}
if (mTransposeA) {
mPostFunctions.emplace_back(std::make_pair([e, l, numberThread, biasValue](
int tId, const float* A, const float* B, float* C) {
auto eC4 = e / 4;
auto eR = eC4 * 4;
for (int y=tId; y<eC4; y+=numberThread) {
Vec4 sumValue = Vec4(biasValue);
auto srcY = A + y * 4;
for (int x=0; x<l; ++x) {
sumValue = sumValue + Vec4::load(srcY + x * e) * Vec4(B[x]);
}
Vec4::save(C + 4 * y, sumValue);
}
if (0 == tId) {
for (int y=eR; y<e; ++y) {
float sumValue = biasValue;
auto srcY = A + y;
for (int x=0; x<l; ++x) {
sumValue = sumValue + srcY[x * e] * B[x];
}
C[y] = sumValue;
}
}
}, numberThread));
} else {
mPostFunctions.emplace_back(std::make_pair([e, l, numberThread, biasValue](
int tId, const float* A, const float* B, float* C) {
auto lC4 = l / 4;
auto lR = lC4 * 4;
for (int y=tId; y<e; y+=numberThread) {
Vec4 sumValue = Vec4(biasValue);
auto srcY = A + y * l;
for (int x=0; x<lC4; ++x) {
sumValue = sumValue + Vec4::load(srcY + 4 * x) * Vec4::load(B + 4 * x);
}
float sumSingle = sumValue[0] + sumValue[1] + sumValue[2] + sumValue[3];
for (int x=lR; x<l; ++x) {
sumSingle += srcY[x] * B[x];
}
C[y] = sumSingle;
}
}, numberThread));
}
}
ErrorCode CPUMatMul::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const Tensor* A = inputs[0];
const Tensor* B = inputs[1];
Tensor* C = outputs[0];
// Fill output by zero if one of inputs is empty.
if (A->elementSize() == 0 || B->elementSize() == 0) {
return NO_ERROR;
}
auto w0 = inputs[0]->length(1);
auto h0 = inputs[0]->length(0);
auto core = static_cast<CPUBackend*>(backend())->functions();
mComputer->onReset();
mPreFunctions.clear();
mPostFunctions.clear();
auto e = C->length(0);
auto h = C->length(1);
auto l = w0;
if (mTransposeA) {
l = h0;
}
if (core->bytes == 4) {
if (h == 1) {
const float* biasPtr = nullptr;
if (inputs.size() > 2) {
auto bias = inputs[2];
biasPtr = bias->host<float>();
}
_scheduleForVec(C->host<float>(), biasPtr, e, l, h);
return NO_ERROR;
}
if (e == 1) {
const float* biasPtr = nullptr;
if (inputs.size() > 2) {
auto bias = inputs[2];
biasPtr = bias->host<float>();
}
_scheduleForVecE(C->host<float>(), biasPtr, e, l, h);
return NO_ERROR;
}
}
int eP, lP, hP;
core->MNNGetMatMulPackMode(&eP, &lP, &hP);
AutoRelease<Tensor> AT(Tensor::createDevice<float>({UP_DIV(l, core->pack), e, core->pack}));
AutoRelease<Tensor> BT(Tensor::createDevice<float>({UP_DIV(h, hP), UP_DIV(l, lP) * lP, hP}));
AutoRelease<Tensor> CT(Tensor::createDevice<float>({UP_DIV(h, core->pack), e, core->pack}));
auto res = backend()->onAcquireBuffer(BT.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
auto BTPtr = BT->host<float>();
float* BTempPtr = BTPtr;
int numberThread = mSupportMultiThread ? ((CPUBackend*)backend())->threadNumber() : 1;
mPreFunctions.emplace_back(std::make_pair([BTempPtr, l, h, this, core] (int tId, const float* APtr, const float* BPtr) {
core->MNNPackForMatMul_B(BTempPtr, BPtr, h, l, mTransposeB);
} , 1));
res = backend()->onAcquireBuffer(AT.get(), Backend::DYNAMIC);
res = res && backend()->onAcquireBuffer(CT.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
auto ATPtr = AT->host<float>();
if (mTransposeA) {
// l, e -> lC4, e, 4
mPreFunctions.emplace_back(std::make_pair([ATPtr, e, l, core](int tId, const float* APtr, const float* BPtr) {
core->MNNPackCUnit(ATPtr, APtr, e, l);
}, 1));
} else {
// e, l -> lC4, e, 4
mPreFunctions.emplace_back(std::make_pair(
[ATPtr, e, l, core](int tId, const float* APtr, const float* BPtr) {
core->MNNPackCUnitTranspose(ATPtr, APtr, e, l);
}, 1));
}
AutoRelease<Tensor> biasWrap;
std::vector<Tensor*> strassenInputs = {AT.get(), BT.get()};
std::vector<float> postParameters;
if (inputs.size() > 2) {
auto bias = inputs[2];
auto biasLength = bias->elementSize();
if (biasLength % core->pack != 0) {
// Padding to align of 4
biasWrap.reset(Tensor::createDevice<float>({UP_DIV(biasLength, core->pack) * core->pack}));
res = backend()->onAcquireBuffer(biasWrap.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
auto borigin = bias->host<float>();
auto bdest = biasWrap->host<float>();
mPreFunctions.emplace_back(std::make_pair(
[borigin, biasLength, bdest, core](int tId, const float* APtr, const float* BPtr) {
::memset(bdest, 0, UP_DIV(biasLength, core->pack) * core->bytes * core->pack);
::memcpy(bdest, borigin, biasLength * core->bytes);
}, 1));
strassenInputs.emplace_back(biasWrap.get());
} else {
strassenInputs.emplace_back(bias);
}
postParameters = {
1.0f,
1.0f,
-std::numeric_limits<float>().max(),
std::numeric_limits<float>().max(),
};
}
auto code = mComputer->onEncode(strassenInputs, {CT.get()}, postParameters);
if (NO_ERROR != code) {
return code;
}
if (nullptr != biasWrap.get()) {
backend()->onReleaseBuffer(biasWrap.get(), Backend::DYNAMIC);
}
auto CTPtr = CT->host<float>();
// hC4, e, 4 -> e, h
mPostFunctions.emplace_back(std::make_pair([CTPtr, e, h, core](
int tId, const float* APtr, const float* BPtr, float* CPtr) {
core->MNNUnpackCUnitTranspose(CPtr, CTPtr, e, h);
}, 1));
backend()->onReleaseBuffer(AT.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(BT.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(CT.get(), Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUMatMul::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
// Fill output by zero if one of inputs is empty.
if (inputs.size() == 2 && outputs.size() == 1 &&
(inputs[0]->elementSize() == 0 || inputs[1]->elementSize() == 0)) {
auto core = static_cast<CPUBackend*>(backend())->functions();
::memset(outputs[0]->host<char>(), 0, outputs[0]->elementSize() * core->bytes);
return NO_ERROR;
}
auto APtr = inputs[0]->host<float>();
auto BPtr = inputs[1]->host<float>();
auto CPtr = outputs[0]->host<float>();
for (auto& f : mPreFunctions) {
MNN_CONCURRENCY_BEGIN(tId, f.second) {
f.first(tId, APtr, BPtr);
}
MNN_CONCURRENCY_END();
}
mComputer->onExecute();
for (auto& f : mPostFunctions) {
MNN_CONCURRENCY_BEGIN(tId, f.second) {
f.first(tId, APtr, BPtr, CPtr);
}
MNN_CONCURRENCY_END();
}
return NO_ERROR;
}
class CPUMultiMatMul : public Execution {
public:
CPUMultiMatMul(Backend *backend, bool transposeA, bool tranposeB) : Execution(backend) {
mMatMul.reset(new CPUMatMul(backend, transposeA, tranposeB, true));
}
virtual ~CPUMultiMatMul() = default;
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
auto core = static_cast<CPUBackend*>(backend())->functions();
auto i0Dim = input0->dimensions();
auto i1Dim = input1->dimensions();
auto o0Dim = output->dimensions();
const int input0Stride = input0->length(i0Dim - 1) * input0->length(i0Dim - 2);
const int input1Stride = input1->length(i1Dim - 1) * input1->length(i1Dim - 2);
const int outputStride = output->length(o0Dim - 1) * output->length(o0Dim - 2);
// Compute BroastCast Dims
auto dimOffset = o0Dim - 2;
const int maxDimensions = dimOffset;
std::vector<int> outputStrides(maxDimensions);
std::vector<int> input0Strides(maxDimensions, 0);
std::vector<int> input1Strides(maxDimensions, 0);
auto i0Offset = output->dimensions() - input0->dimensions();
auto i1Offset = output->dimensions() - input1->dimensions();
int totalSize = 1;
int i0Size = 1;
int i1Size = 1;
for (int i = maxDimensions - 1; i >=0 ; --i) {
outputStrides[i] = totalSize;
totalSize *= output->length(i);
if (i >= i0Offset && input0->length(i - i0Offset) > 1) {
input0Strides[i] = i0Size;
i0Size *= input0->length(i - i0Offset);
}
if (i >= i1Offset && input1->length(i - i1Offset) > 1) {
input1Strides[i] = i1Size;
i1Size *= input1->length(i - i1Offset);
}
}
auto input0Ptr = input0->host<uint8_t>();
auto input1Ptr = input1->host<uint8_t>();
auto outputPtr = output->host<uint8_t>();
for (int index = 0; index < totalSize; ++index) {
// Unrool the cords
auto c = index;
i0Offset = 0;
i1Offset = 0;
for (int i=0; i<maxDimensions; ++i) {
auto cord = c / outputStrides[i];
i0Offset += input0Strides[i] * cord;
i1Offset += input1Strides[i] * cord;
c = c % outputStrides[i];
}
::memcpy(mMatrixA->host<uint8_t>(), input0Ptr + i0Offset * input0Stride * core->bytes, input0Stride * core->bytes);
::memcpy(mMatrixB->host<uint8_t>(), input1Ptr + i1Offset * input1Stride * core->bytes, input1Stride * core->bytes);
mMatMul->onExecute(mTempInputs, mTempOutputs);
::memcpy(outputPtr + index * outputStride * core->bytes, mMatrixC->host<uint8_t>(), outputStride * core->bytes);
}
return NO_ERROR;
}
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
mMatrixA.reset(Tensor::createDevice<float>({input0->length(input0->dimensions()-2), input0->length(input0->dimensions()-1)}));
mMatrixB.reset(Tensor::createDevice<float>({input1->length(input1->dimensions()-2), input1->length(input1->dimensions()-1)}));
mMatrixC.reset(Tensor::createDevice<float>({output->length(output->dimensions()-2), output->length(output->dimensions()-1)}));
mTempInputs = {mMatrixA.get(), mMatrixB.get()};
mTempOutputs = {mMatrixC.get()};
auto res = backend()->onAcquireBuffer(mMatrixA.get(), Backend::DYNAMIC);
res = res && backend()->onAcquireBuffer(mMatrixB.get(), Backend::DYNAMIC);
res = res && backend()->onAcquireBuffer(mMatrixC.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
auto code = mMatMul->onResize(mTempInputs, mTempOutputs);
backend()->onReleaseBuffer(mMatrixA.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mMatrixB.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mMatrixC.get(), Backend::DYNAMIC);
return code;
}
private:
std::shared_ptr<Execution> mMatMul;
std::vector<Tensor*> mTempInputs;
std::vector<Tensor*> mTempOutputs;
std::shared_ptr<Tensor> mMatrixA;
std::shared_ptr<Tensor> mMatrixB;
std::shared_ptr<Tensor> mMatrixC;
};
class CPUMatMulCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
auto param = op->main_as_MatMul();
if (outputs[0]->dimensions() > 2) {
return new CPUMultiMatMul(backend, param->transposeA(), param->transposeB());
}
return new CPUMatMul(backend, param->transposeA(), param->transposeB(), true);
}
};
REGISTER_CPU_OP_CREATOR(CPUMatMulCreator, OpType_MatMul);
} // namespace MNN