MNN/source/shape/ShapeBatchMatMul.cpp

61 lines
1.8 KiB
C++

//
// ShapeBatchMatMul.cpp
// MNN
//
// Created by MNN on 2019/03/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
class BatchMatMulComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto param = op->main_as_BatchMatMulParam();
auto input0 = inputs[0];
auto input1 = inputs[1];
MNN_ASSERT(input0->dimensions() == input1->dimensions());
const int dimensions = input0->dimensions();
MNN_ASSERT(dimensions >= 2);
for (int i = 0; i < dimensions - 2; ++i) {
MNN_ASSERT(input0->length(i) == input1->length(i));
}
auto output = outputs[0];
output->buffer().type = input0->buffer().type;
TensorUtils::copyShape(input0, output, true);
auto k0 = input0->length(dimensions - 1);
auto k1 = input1->length(dimensions - 2);
if (param->adjX()) {
k0 = input0->length(dimensions - 2);
output->setLength(dimensions - 2, input0->length(dimensions - 1));
} else {
output->setLength(dimensions - 2, input0->length(dimensions - 2));
}
if (param->adjY()) {
k1 = input1->length(dimensions - 1);
output->setLength(dimensions - 1, input1->length(dimensions - 2));
} else {
output->setLength(dimensions - 1, input1->length(dimensions - 1));
}
if (k0 != k1) {
return false;
}
return true;
}
};
REGISTER_SHAPE(BatchMatMulComputer, OpType_BatchMatMul);
} // namespace MNN