mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			92 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeLSTM.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| // Size Computer
 | |
| class LSTMComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                const std::vector<Tensor *> &outputs) const override {
 | |
|         if (1 == outputs.size()) {
 | |
|             // For compability for old version model
 | |
|             MNN_ASSERT(2 >= inputs.size());
 | |
|             MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|             // copy dims
 | |
|             auto &input  = inputs[0]->buffer();
 | |
|             auto &output = outputs[0]->buffer();
 | |
|             memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
 | |
| 
 | |
|             auto LSTM            = op->main_as_LSTM();
 | |
|             output.dimensions = 4;
 | |
|             output.dim[3].extent = LSTM->outputCount();
 | |
|             output.dim[2].extent = 1;
 | |
|             output.type = halide_type_of<float>();
 | |
|             TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|             return true;
 | |
|         }
 | |
|         // Onnx's LSTM
 | |
|         MNN_ASSERT(inputs.size() >= 4);
 | |
|         MNN_ASSERT(outputs.size() == 3);
 | |
|         auto X = inputs[0];
 | |
|         auto seqLength = X->length(0);
 | |
|         auto batchSize = X->length(1);
 | |
|         auto hiddenSize = op->main_as_LSTM()->outputCount();
 | |
| 
 | |
|         auto Y = outputs[0];
 | |
|         auto ht = outputs[1];
 | |
|         auto ct = outputs[2];
 | |
|         Y->buffer().dimensions = 4;
 | |
|         ht->buffer().dimensions = 3;
 | |
|         ct->buffer().dimensions = 3;
 | |
|         Y->setLength(0, seqLength);
 | |
|         
 | |
|         int direction = inputs[1]->length(0);
 | |
|         MNN_ASSERT(1 == direction || 2 == direction);
 | |
|         Y->setLength(1, direction);
 | |
|         Y->setLength(2, batchSize);
 | |
|         Y->setLength(3, hiddenSize);
 | |
|         
 | |
|         ht->setLength(0, direction);
 | |
|         ht->setLength(1, batchSize);
 | |
|         ht->setLength(2, hiddenSize);
 | |
| 
 | |
|         ct->setLength(0, direction);
 | |
|         ct->setLength(1, batchSize);
 | |
|         ct->setLength(2, hiddenSize);
 | |
| 
 | |
|         TensorUtils::getDescribe(Y)->dimensionFormat = TensorUtils::getDescribe(X)->dimensionFormat;
 | |
|         TensorUtils::getDescribe(ht)->dimensionFormat = TensorUtils::getDescribe(X)->dimensionFormat;
 | |
|         TensorUtils::getDescribe(ct)->dimensionFormat = TensorUtils::getDescribe(X)->dimensionFormat;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(LSTMComputer, OpType_LSTM);
 | |
| 
 | |
| // LSTMCellBlock Size Computer
 | |
| class LSTMBlockCellComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                const std::vector<Tensor *> &outputs) const override {
 | |
|         MNN_ASSERT(inputs.size() == 8);
 | |
|         MNN_ASSERT(outputs.size() == 7);
 | |
|         for (int i = 0; i < outputs.size(); i++) {
 | |
|             TensorUtils::copyShape(inputs[1], outputs[i]);
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(LSTMBlockCellComputer, OpType_LSTMBlockCell);
 | |
| } // namespace MNN
 |