mirror of https://github.com/alibaba/MNN.git
104 lines
3.7 KiB
C++
104 lines
3.7 KiB
C++
//
|
|
// CPUFloatToInt8.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/5/22.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUFloatToInt8.hpp"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "core/Concurrency.h"
|
|
#include "backend/cpu/compute/Int8FunctionsOpt.h"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "compute/CommonOptFunction.h"
|
|
|
|
namespace MNN {
|
|
|
|
CPUFloatToInt8::CPUFloatToInt8(Backend* backend, const MNN::Op* param) : Execution(backend) {
|
|
auto scale = param->main_as_QuantizedFloatParam();
|
|
const int scaleLen = scale->tensorScale()->size();
|
|
mClipBits = scale->nbits();
|
|
auto pack = static_cast<CPUBackend*>(backend)->functions()->pack;
|
|
mScales.reset(Tensor::createDevice<float>({UP_DIV(scaleLen, pack) * pack}));
|
|
mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
|
|
if (!mValid) {
|
|
return;
|
|
}
|
|
if (1 == scaleLen) {
|
|
mSingle = true;
|
|
for (int i = 0; i < pack; ++i) {
|
|
mScales->host<float>()[i] = scale->tensorScale()->data()[0];
|
|
}
|
|
} else {
|
|
memset(mScales->host<float>(), 0, UP_DIV(scaleLen, pack) * pack * sizeof(float));
|
|
memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
|
|
}
|
|
if (scale->floatzeros()) {
|
|
mZeroPoint = scale->floatzeros()->data()[0];
|
|
} else {
|
|
mZeroPoint = static_cast<float>(scale->zeroPoint());
|
|
}
|
|
mClampMin = scale->clampMin();
|
|
mClampMax = scale->clampMax();
|
|
}
|
|
CPUFloatToInt8::~CPUFloatToInt8() {
|
|
backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
|
|
}
|
|
|
|
ErrorCode CPUFloatToInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPUFloatToInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
const auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
auto pack = static_cast<CPUBackend*>(backend())->functions()->pack;
|
|
auto int8F = static_cast<CPUBackend*>(backend())->int8Functions();
|
|
|
|
const auto inputDataPtr = input->host<float>();
|
|
auto outputDataPtr = output->host<int8_t>();
|
|
const auto scaleDataPtr = mScales->host<float>();
|
|
const int channels = input->channel();
|
|
int icDiv4 = UP_DIV(channels, pack);
|
|
const int batch = input->batch();
|
|
const int batchStride = input->stride(0);
|
|
int oc4Stride = 1;
|
|
for (int i = 2; i < input->dimensions(); ++i) {
|
|
oc4Stride *= input->length(i);
|
|
}
|
|
if (mSingle) {
|
|
oc4Stride = icDiv4 * oc4Stride;
|
|
icDiv4 = 1;
|
|
}
|
|
int total = batch * icDiv4;
|
|
auto numberThread = std::min(icDiv4, ((CPUBackend*)backend())->threadNumber());
|
|
|
|
MNN_CONCURRENCY_BEGIN(tId, total) {
|
|
int bIndex = tId / icDiv4;
|
|
int z = tId % icDiv4;
|
|
const auto srcChannelPtr = inputDataPtr + tId * oc4Stride * pack;
|
|
const auto scaleChannelPtr = scaleDataPtr + z * pack;
|
|
auto dstChannlePtr = outputDataPtr + tId * oc4Stride * pack;
|
|
int8F->MNNFloat2Int8(srcChannelPtr, dstChannlePtr, oc4Stride, scaleChannelPtr, mClampMin, mClampMax, &mZeroPoint, 1);
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUFloatToInt8Creator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const override {
|
|
if (nullptr == op->main_as_QuantizedFloatParam()) {
|
|
return new CastWrapExecution(backend, DataType_DT_INT8);
|
|
}
|
|
return new CPUFloatToInt8(backend, op);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUFloatToInt8Creator, OpType_FloatToInt8);
|
|
|
|
} // namespace MNN
|