MNN/source/backend/cpu/CPUDeconvolution.hpp

125 lines
5.0 KiB
C++

//
// CPUDeconvolution.hpp
// MNN
//
// Created by MNN on 2018/07/20.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef CPUDeconvolution_hpp
#define CPUDeconvolution_hpp
#include "CPUConvolution.hpp"
#include "compute/CommonOptFunction.h"
#include "compute/StrassenMatmulComputor.hpp"
#include "compute/GemmInt8Executor.hpp"
#include "core/TensorUtils.hpp"
namespace MNN {
class CPUDeconvolutionBasic : public CPUConvolution {
public:
CPUDeconvolutionBasic(const Tensor *input, const Op *convOp, Backend *b);
virtual ~CPUDeconvolutionBasic() = default;
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
protected:
int mSrcCount;
std::vector<float> mPostParameters;
};
class CPUDeconvolutionCommon : public CPUDeconvolutionBasic {
public:
CPUDeconvolutionCommon(const Tensor *input, const Op *convOp, Backend *b, bool dynamicWeight);
virtual ~CPUDeconvolutionCommon();
protected:
std::shared_ptr<Tensor> mBias;
bool mDynamicWeight;
};
class CPUDeconvolutionOrigin : public CPUDeconvolutionBasic {
public:
CPUDeconvolutionOrigin(const Tensor *input, Tensor *weight, const Op *convOp, Backend *b, bool ModeInt8)
: CPUDeconvolutionBasic(input, convOp, b){
if (ModeInt8) {
const auto weightDataPtr = weight->host<int8_t>();
auto conv2d = convOp->main_as_Convolution2D();
auto common = conv2d->common();
auto pack = static_cast<CPUBackend*>(b)->functions()->pack;
mResource = CPUConvolution::makeResourceInt8(backend(), convOp, pack);
CPUConvolution::MutableResourceInt8 mutableResource(mResource, b);
auto core = static_cast<CPUBackend*>(b)->int8Functions();
auto gemmKernel = core->Int8GemmKernel;
int UNIT, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
const auto kEleCnt = mCommon->kernelX() * mCommon->kernelY();
const int ocDiv4 = UP_DIV(common->outputCount(), pack) * kEleCnt;
const int icDiv4 = UP_DIV(common->inputCount(), SRC_UNIT);
const int ocDivUnit = UP_DIV(common->outputCount(), UNIT);
const int oc4 = ocDiv4 / kEleCnt;
const int bias_elesize = ocDiv4 * pack;
// set offset if use SSE.
auto inputQuant = TensorUtils::getQuantInfo(input);
auto inputZeroPoint = inputQuant[1];
std::vector<int32_t> _bias(bias_elesize, inputZeroPoint);
#ifdef MNN_USE_SSE
int actBits = conv2d->symmetricQuan()->nbits();
if (actBits <= 7) {
gemmKernel = core->Int8GemmKernelFast;
}
for (int a = 0; a < kEleCnt; ++a){
for (int oz = 0; oz < ocDivUnit * UNIT; ++oz) {
int offset = inputZeroPoint, oz4 = oz / UNIT, ozRemain = oz % UNIT;
for (int sz = 0; sz < icDiv4 * SRC_UNIT; ++sz) {
int sz4 = sz / SRC_UNIT, szRemain = sz % SRC_UNIT;
int index = (((a * oc4 + oz4) * icDiv4 + sz4) * UNIT + ozRemain) * SRC_UNIT + szRemain;
auto weightInt8Data = weightDataPtr[index];
offset += weightInt8Data * (-128);
}
if (oz < oc4 * pack) {
_bias[a * oc4 * pack + oz] = offset;
}
}
}
#else
if(conv2d->symmetricQuan() && conv2d->symmetricQuan()->method() == QuantizeAlgo_OVERFLOW_AWARE){
gemmKernel = core->Int8GemmKernelFast;
}
#endif
mDeconvInt8Exe.reset(new GemmInt8Executor(b, mResource, convOp, gemmKernel, _bias));
}
}
virtual ~CPUDeconvolutionOrigin() = default;
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
private:
std::shared_ptr<StrassenMatrixComputor> mMatMul;
std::shared_ptr<GemmInt8Executor> mDeconvInt8Exe;
std::vector<std::pair<std::function<void(uint8_t*, int)>, int>> mPostFunctions;
std::shared_ptr<Tensor> mTempOutput;
std::shared_ptr<CPUConvolution::ResourceInt8> mResource;
};
class CPUDeconvolution : public CPUDeconvolutionCommon {
public:
CPUDeconvolution(const Tensor *input, const Op *convOp, Backend *b, bool dynamicWeight);
virtual ~CPUDeconvolution();
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
struct Param {
int outputCount;
int srcCount;
int fh;
int fw;
};
private:
Param mParam;
std::shared_ptr<Tensor> mWeight;
std::shared_ptr<Tensor> mWeightTransformCache;
std::vector<Tensor *> mTempInputs;
std::shared_ptr<CPUDeconvolutionOrigin> mOrigin;
};
} // namespace MNN
#endif /* CPUDeconvolution_hpp */