MNN/source/backend/cpu/KVCacheManager.cpp

621 lines
28 KiB
C++

//
// KVCacheManager.cpp
// MNN
//
// Created by MNN on 2024/08/05.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef MNN_SUPPORT_TRANSFORMER_FUSE
#include "KVCacheManager.hpp"
#include "core/Concurrency.h"
namespace MNN {
// Translate an address to a hex number string
static inline std::string addrToHex(void *addr) {
std::string result = "";
uint64_t n = (uint64_t)addr;
for(int i = 15; i >= 0; i--) {
int t = (n >> (i * 4)) & 0x0f;
result.push_back((t < 10) ? ('0' + t) : ('A' + t - 10));
}
return result;
}
void KVCacheManager::createKVCacheFile() {
// Each layer has its own kvcache, so we have to create a key file and a value file for each layer and the file name must be unique
// Here we use the address of the mResource as the file name because the addresses of mResource in different layers are guaranteed to be different
std::string fileName = addrToHex(this);
std::string pathk = MNNFilePathConcat(mConfig.mKVCacheDir, fileName) + ".k";
std::string pathv = MNNFilePathConcat(mConfig.mKVCacheDir, fileName) + ".v";
mKeyCacheFD = MNNCreateFile(pathk.c_str());
mValueCacheFD = MNNCreateFile(pathv.c_str());
if (mKeyCacheFD == INVALID_FILE) {
MNN_PRINT("Failed to create the file: %s\n", pathk.c_str());
}
if (mValueCacheFD == INVALID_FILE) {
MNN_PRINT("Failed to create the file: %s\n", pathv.c_str());
}
}
void KVCacheManager::removeKVCacheFile() {
std::string fileName = addrToHex(this);
std::string pathk = MNNFilePathConcat(mConfig.mKVCacheDir, fileName) + ".k";
std::string pathv = MNNFilePathConcat(mConfig.mKVCacheDir, fileName) + ".v";
if (mKeyCacheFD != INVALID_FILE) {
MNNCloseFile(mKeyCacheFD);
mKeyCacheFD = INVALID_FILE;
if (MNNRemoveFile(pathk.c_str()) != MNN::NO_ERROR) {
MNN_PRINT("Failed to remove the file: %s\n", pathk.c_str());
}
}
if (mValueCacheFD != INVALID_FILE) {
MNNCloseFile(mValueCacheFD);
mValueCacheFD = INVALID_FILE;
if (MNNRemoveFile(pathv.c_str()) != MNN::NO_ERROR) {
MNN_PRINT("Failed to remove the file: %s\n", pathv.c_str());
}
}
}
void KVCacheManager::resetKVCacheFileSize(size_t keySize, size_t valueSize) {
if (MNNSetFileSize(mKeyCacheFD, keySize) != MNN::NO_ERROR || MNNSetFileSize(mValueCacheFD, valueSize) != MNN::NO_ERROR) {
MNN_PRINT("Failed to resize the kvcache files!\n");
}
}
/*
** @brief Memory-map the kvcache file
** @hint After memory-mapping, we can access the kvcache files with pointers, just like accessing memory buffer
** But the data actually resides in disk.
** The OS will set some kernel page cache and manage the data swaping, which we do not need to care.
*/
void KVCacheManager::mmapKVCache(size_t keySize, size_t valueSize)
{
if (mMapKeyAddr == nullptr) {
mMapKeyAddr = (char *)MNNMmapFile(mKeyCacheFD, keySize);
if (mMapKeyAddr == nullptr) {
MNN_PRINT("Failed to memory-map the kvcache!\n");
}
}
if (mMapValueAddr == nullptr) {
mMapValueAddr = (char *)MNNMmapFile(mValueCacheFD, valueSize);
if (mMapValueAddr == nullptr) {
MNN_PRINT("Failed to memory-map the kvcache!\n");
}
}
}
void KVCacheManager::unmapKVCache(size_t keySize, size_t valueSize)
{
if (mMapKeyAddr != nullptr) {
MNNUnmapFile(mMapKeyAddr, keySize);
mMapKeyAddr = nullptr;
}
if (mMapValueAddr != nullptr) {
MNNUnmapFile(mMapValueAddr, valueSize);
mMapValueAddr = nullptr;
}
}
/*
** @brief Expand the size of kvcache and copy it from the old tensor in memory to the new tensor in memory
** Finally reset the pointer to the new tensor
*/
void KVCacheManager::expandKVCacheInMem(int oldMaxLength) {
/*=================================== Key ===================================*/
if (mConfig.mUseInt8Kernel) {
auto new_key = Tensor::createDevice<int8_t>({mKvNumHead, UP_DIV(mMaxLength, hP8), UP_DIV(mHeadDim, lP8), hP8 * lP8});
mBackend->onAcquireBuffer(new_key, Backend::STATIC);
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
new_key->host<char>() + h * UP_DIV(mMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8,
mPastKey->host<char>() + h * UP_DIV(oldMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8,
UP_DIV(oldMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8
);
}
mPastKey.reset(new_key);
}
else if (mConfig.mQuantKey) {
auto new_key = Tensor::createDevice<int8_t>({mKvNumHead, UP_DIV(mMaxLength, hP), mHeadDim, hP});
mBackend->onAcquireBuffer(new_key, Backend::STATIC);
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
new_key->host<char>() + h * UP_DIV(mMaxLength, hP) * mHeadDim * hP,
mPastKey->host<char>() + h * UP_DIV(oldMaxLength, hP) * mHeadDim * hP,
UP_DIV(oldMaxLength, hP) * mHeadDim * hP
);
}
mPastKey.reset(new_key);
}
else {
auto new_key = Tensor::createDevice<float>({mKvNumHead, UP_DIV(mMaxLength, hP), mHeadDim, hP});
mBackend->onAcquireBuffer(new_key, Backend::STATIC);
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
new_key->host<char>() + h * UP_DIV(mMaxLength, hP) * mHeadDim * hP * mBytes,
mPastKey->host<char>() + h * UP_DIV(oldMaxLength, hP) * mHeadDim * hP * mBytes,
UP_DIV(oldMaxLength, hP) * mHeadDim * hP * mBytes
);
}
mPastKey.reset(new_key);
}
/*=================================== Value ===================================*/
if (mConfig.mQuantValue) {
auto new_value = Tensor::createDevice<fp8_t>({mKvNumHead, UP_DIV(mHeadDim, hP), mMaxLength, hP});
mBackend->onAcquireBuffer(new_value, Backend::STATIC);
for (int h = 0; h < mKvNumHead; h++) {
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
memcpy(
new_value->host<char>() + (h * UP_DIV(mHeadDim, hP) + i) * mMaxLength * hP,
mPastValue->host<char>() + (h * UP_DIV(mHeadDim, hP) + i) * oldMaxLength * hP,
oldMaxLength * hP
);
}
}
mPastValue.reset(new_value);
}
else {
auto new_value = Tensor::createDevice<float>({mKvNumHead, UP_DIV(mHeadDim, hP), mMaxLength, hP});
mBackend->onAcquireBuffer(new_value, Backend::STATIC);
for (int h = 0; h < mKvNumHead; h++) {
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
memcpy(
new_value->host<char>() + (h * UP_DIV(mHeadDim, hP) + i) * mMaxLength * hP * mBytes,
mPastValue->host<char>() + (h * UP_DIV(mHeadDim, hP) + i) * oldMaxLength * hP * mBytes,
oldMaxLength * hP * mBytes
);
}
}
mPastValue.reset(new_value);
}
}
/*
** @brief Move the kvcache from memory to the memory-mapped kvcache files in disk
** Then release the memory buffer of old kvcache
*/
void KVCacheManager::moveKVCacheFromMemToDisk(int oldMaxLength) {
/*=================================== Key ===================================*/
if (mConfig.mUseInt8Kernel) {
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
mMapKeyAddr + h * UP_DIV(mMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8,
mPastKey->host<char>() + h * UP_DIV(oldMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8,
UP_DIV(oldMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8
);
}
mBackend->onReleaseBuffer(mPastKey.get(), Backend::STATIC);
mPastKey.reset();
}
if (mConfig.mQuantKey) {
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
mMapKeyAddr + h * UP_DIV(mMaxLength, hP) * mHeadDim * hP,
mPastKey->host<char>() + h * UP_DIV(oldMaxLength, hP) * mHeadDim * hP,
UP_DIV(oldMaxLength, hP) * mHeadDim * hP
);
}
mBackend->onReleaseBuffer(mPastKey.get(), Backend::STATIC);
mPastKey.reset();
}
else {
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
mMapKeyAddr + h * UP_DIV(mMaxLength, hP) * mHeadDim * hP * mBytes,
mPastKey->host<char>() + h * UP_DIV(oldMaxLength, hP) * mHeadDim * hP * mBytes,
UP_DIV(oldMaxLength, hP) * mHeadDim * hP * mBytes
);
}
mBackend->onReleaseBuffer(mPastKey.get(), Backend::STATIC);
mPastKey.reset();
}
/*=================================== Value ===================================*/
if (mConfig.mQuantValue) {
for (int h = 0; h < mKvNumHead; h++) {
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
memcpy(
mMapValueAddr + (h * UP_DIV(mHeadDim, hP) + i) * mMaxLength * hP,
mPastValue->host<char>() + (h * UP_DIV(mHeadDim, hP) + i) * oldMaxLength * hP,
oldMaxLength * hP
);
}
}
mBackend->onReleaseBuffer(mPastValue.get(), Backend::STATIC);
mPastValue.reset();
}
else {
for (int h = 0; h < mKvNumHead; h++) {
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
memcpy(
mMapValueAddr + (h * UP_DIV(mHeadDim, hP) + i) * mMaxLength * hP * mBytes,
mPastValue->host<char>() + (h * UP_DIV(mHeadDim, hP) + i) * oldMaxLength * hP * mBytes,
oldMaxLength * hP * mBytes
);
}
}
mBackend->onReleaseBuffer(mPastValue.get(), Backend::STATIC);
mPastValue.reset();
}
}
/*
** @brief Expand the size of kvcache files in disk
*/
void KVCacheManager::expandKVCacheInDisk(int oldMaxLength, int oldKeySize, int oldValueSize, int keySize, int valueSize) {
// Step 1: Copy the old kvcache from files to temporary buffers in memory
std::shared_ptr<Tensor> old_key, old_value;
if (mConfig.mUseInt8Kernel) {
old_key.reset(Tensor::createDevice<int8_t>({mKvNumHead, UP_DIV(oldMaxLength, hP8), UP_DIV(mHeadDim, lP8), hP8 * lP8}));
} else if (mConfig.mQuantKey) {
old_key.reset(Tensor::createDevice<int8_t>({mKvNumHead, UP_DIV(oldMaxLength, hP), mHeadDim, hP}));
} else {
old_key.reset(Tensor::createDevice<float>({mKvNumHead, UP_DIV(oldMaxLength, hP), mHeadDim, hP}));
}
if (mConfig.mQuantValue) {
old_value.reset(Tensor::createDevice<fp8_t>({mKvNumHead, UP_DIV(mHeadDim, hP), oldMaxLength, hP}));
} else {
old_value.reset(Tensor::createDevice<float>({mKvNumHead, UP_DIV(mHeadDim, hP), oldMaxLength, hP}));
}
mBackend->onAcquireBuffer(old_key.get(), Backend::STATIC);
mBackend->onAcquireBuffer(old_value.get(), Backend::STATIC);
mmapKVCache(oldKeySize, oldValueSize);
memcpy(old_key->host<char>(), mMapKeyAddr, oldKeySize);
memcpy(old_value->host<char>(), mMapValueAddr, oldValueSize);
// Step 2: Resize the kvcache files and remap them
unmapKVCache(oldKeySize, oldValueSize);
resetKVCacheFileSize(keySize, valueSize);
mmapKVCache(keySize, valueSize);
// Step 3: Move the kvcache from temporary buffers in memory to disk
if (mConfig.mUseInt8Kernel) {
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
mMapKeyAddr + h * UP_DIV(mMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8,
old_key->host<char>() + h * UP_DIV(oldMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8,
UP_DIV(oldMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8
);
}
} else if (mConfig.mQuantKey) {
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
mMapKeyAddr + h * UP_DIV(mMaxLength, hP) * mHeadDim * hP,
old_key->host<char>() + h * UP_DIV(oldMaxLength, hP) * mHeadDim * hP,
UP_DIV(oldMaxLength, hP) * mHeadDim * hP
);
}
} else {
for (int h = 0; h < mKvNumHead; h++) {
memcpy(
mMapKeyAddr + h * UP_DIV(mMaxLength, hP) * mHeadDim * hP * mBytes,
old_key->host<char>() + h * UP_DIV(oldMaxLength, hP) * mHeadDim * hP * mBytes,
UP_DIV(oldMaxLength, hP) * mHeadDim * hP * mBytes
);
}
}
if (mConfig.mQuantValue) {
for (int h = 0; h < mKvNumHead; h++) {
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
memcpy(
mMapValueAddr + (h * UP_DIV(mHeadDim, hP) + i) * mMaxLength * hP,
old_value->host<char>() + (h * UP_DIV(mHeadDim, hP) + i) * oldMaxLength * hP,
oldMaxLength * hP
);
}
}
} else {
for (int h = 0; h < mKvNumHead; h++) {
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
memcpy(
mMapValueAddr + (h * UP_DIV(mHeadDim, hP) + i) * mMaxLength * hP * mBytes,
old_value->host<char>() + (h * UP_DIV(mHeadDim, hP) + i) * oldMaxLength * hP * mBytes,
oldMaxLength * hP * mBytes
);
}
}
}
// Step 4: Release the temporary buffers
mBackend->onReleaseBuffer(old_key.get(), Backend::STATIC);
mBackend->onReleaseBuffer(old_value.get(), Backend::STATIC);
}
void KVCacheManager::onResize(int kv_num_head, int head_dim) {
mKvNumHead = kv_num_head;
mHeadDim = head_dim;
auto core = static_cast<CPUBackend *>(mBackend)->functions();
core->MNNGetMatMulPackMode(&eP, &lP, &hP);
mBytes = core->bytes;
mThreadNum = static_cast<CPUBackend *>(mBackend)->threadNumber();
if (mThreadNum > mKvNumHead) {
mThreadNum = mKvNumHead;
}
if (mConfig.mUseInt8Kernel) {
static_cast<CPUBackend *>(mBackend)->int8Functions()->MNNGetGemmUnit(&hP8, &lP8, &eP8);
}
}
void KVCacheManager::onAlloc(int kv_seq_len) {
mMaxLength = kv_seq_len + mConfig.mExpandChunk;
size_t keySize = 0, valueSize = 0;
if (mConfig.mUseInt8Kernel) {
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8;
} else if (mConfig.mQuantKey) {
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP) * mHeadDim * hP;
} else {
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP) * mHeadDim * hP * mBytes;
}
valueSize = (size_t)mKvNumHead * UP_DIV(mHeadDim, hP) * mMaxLength * hP * (mConfig.mQuantValue ? 1 : mBytes);
/*============== Put the kvcache in disk ===========*/
if (mConfig.mKVCacheSizeLimit != -1 && keySize + valueSize > mConfig.mKVCacheSizeLimit) {
createKVCacheFile();
resetKVCacheFileSize(keySize, valueSize);
mmapKVCache(keySize, valueSize);
mKVCacheInDisk = true;
}
/*============== Put the kvcache in memory ===========*/
else {
if (mConfig.mUseInt8Kernel) {
mPastKey.reset(Tensor::createDevice<int8_t>({mKvNumHead, UP_DIV(mMaxLength, hP8), UP_DIV(mHeadDim, lP8), hP8 * lP8}));
} else if (mConfig.mQuantKey) {
mPastKey.reset(Tensor::createDevice<int8_t>({mKvNumHead, UP_DIV(mMaxLength, hP), mHeadDim, hP}));
} else {
mPastKey.reset(Tensor::createDevice<float>({mKvNumHead, UP_DIV(mMaxLength, hP), mHeadDim, hP}));
}
if (mConfig.mQuantValue) {
mPastValue.reset(Tensor::createDevice<fp8_t>({mKvNumHead, UP_DIV(mHeadDim, hP), mMaxLength, hP}));
} else {
mPastValue.reset(Tensor::createDevice<float>({mKvNumHead, UP_DIV(mHeadDim, hP), mMaxLength, hP}));
}
mBackend->onAcquireBuffer(mPastKey.get(), Backend::STATIC);
mBackend->onAcquireBuffer(mPastValue.get(), Backend::STATIC);
}
// scale, zero point and sum of key for quantization
if (mConfig.mUseInt8Kernel) {
mKeyScale.reset(Tensor::createDevice<int32_t>({mKvNumHead, UP_DIV(mMaxLength, hP8), hP8}));
mKeyZeroPoint.reset(Tensor::createDevice<int32_t>({mKvNumHead, UP_DIV(mMaxLength, hP8), hP8}));
mKeySum.reset(Tensor::createDevice<int32_t>({mKvNumHead, UP_DIV(mMaxLength, hP8), hP8}));
mBackend->onAcquireBuffer(mKeyScale.get(), Backend::STATIC);
mBackend->onAcquireBuffer(mKeyZeroPoint.get(), Backend::STATIC);
mBackend->onAcquireBuffer(mKeySum.get(), Backend::STATIC);
} else if (mConfig.mQuantKey) {
mKeyScale.reset(Tensor::createDevice<float>({mKvNumHead, UP_DIV(mMaxLength, hP), hP}));
mKeyZeroPoint.reset(Tensor::createDevice<float>({mKvNumHead, UP_DIV(mMaxLength, hP), hP}));
mBackend->onAcquireBuffer(mKeyScale.get(), Backend::STATIC);
mBackend->onAcquireBuffer(mKeyZeroPoint.get(), Backend::STATIC);
}
}
void KVCacheManager::onRealloc(int kv_seq_len) {
if (kv_seq_len <= mMaxLength) {
return;
}
int oldMaxLength = mMaxLength;
mMaxLength = kv_seq_len + mConfig.mExpandChunk;
size_t oldKeySize, oldValueSize, keySize, valueSize;
if (mConfig.mUseInt8Kernel) {
oldKeySize = (size_t)mKvNumHead * UP_DIV(oldMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8;
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8;
} else if (mConfig.mQuantKey) {
oldKeySize = (size_t)mKvNumHead * UP_DIV(oldMaxLength, hP) * mHeadDim * hP;
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP) * mHeadDim * hP;
} else {
oldKeySize = (size_t)mKvNumHead * UP_DIV(oldMaxLength, hP) * mHeadDim * hP * mBytes;
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP) * mHeadDim * hP * mBytes;
}
oldValueSize = (size_t)mKvNumHead * UP_DIV(mHeadDim, hP) * oldMaxLength * hP * (mConfig.mQuantValue ? 1 : mBytes);
valueSize = (size_t)mKvNumHead * UP_DIV(mHeadDim, hP) * mMaxLength * hP * (mConfig.mQuantValue ? 1 : mBytes);
/*==== No limit for kvcache ====*/
if (mConfig.mKVCacheSizeLimit == -1) {
expandKVCacheInMem(oldMaxLength);
}
/*==== Last time the kvcache is memory, now it should be in memory too ====*/
else if (keySize + valueSize <= mConfig.mKVCacheSizeLimit) {
expandKVCacheInMem(oldMaxLength);
}
/*==== Last time the kvcache is in memory, but now it should be moved to disk ====*/
else if (oldKeySize + oldValueSize <= mConfig.mKVCacheSizeLimit) {
createKVCacheFile();
resetKVCacheFileSize(keySize, valueSize);
mmapKVCache(keySize, valueSize);
moveKVCacheFromMemToDisk(oldMaxLength);
mKVCacheInDisk = true;
}
/*==== Last time the kvcache is disk, now it should be in disk too ====*/
else {
expandKVCacheInDisk(oldMaxLength, oldKeySize, oldValueSize, keySize, valueSize);
}
/* No matter where is the kvcache, the scales and zero points are always in memory, since their size is very small */
if (mConfig.mUseInt8Kernel) {
auto new_scale = Tensor::createDevice<int32_t>({mKvNumHead, UP_DIV(mMaxLength, hP8), hP8});
auto new_zeroPoint = Tensor::createDevice<int32_t>({mKvNumHead, UP_DIV(mMaxLength, hP8), hP8});
auto new_sum = Tensor::createDevice<int32_t>({mKvNumHead, UP_DIV(mMaxLength, hP8), hP8});
mBackend->onAcquireBuffer(new_scale, Backend::STATIC);
mBackend->onAcquireBuffer(new_zeroPoint, Backend::STATIC);
mBackend->onAcquireBuffer(new_sum, Backend::STATIC);
for (int h = 0; h < mKvNumHead; h++) {
memcpy(new_scale->host<char>() + h * UP_DIV(mMaxLength, hP8) * hP8 * 4, mKeyScale->host<char>() + h * UP_DIV(oldMaxLength, hP8) * hP8 * 4, UP_DIV(oldMaxLength, hP8) * hP8 * 4);
memcpy(new_zeroPoint->host<char>() + h * UP_DIV(mMaxLength, hP8) * hP8 * 4, mKeyZeroPoint->host<char>() + h * UP_DIV(oldMaxLength, hP8) * hP8 * 4, UP_DIV(oldMaxLength, hP8) * hP8 * 4);
memcpy(new_sum->host<char>() + h * UP_DIV(mMaxLength, hP8) * hP8 * 4, mKeySum->host<char>() + h * UP_DIV(oldMaxLength, hP8) * hP8 * 4, UP_DIV(oldMaxLength, hP8) * hP8 * 4);
}
mKeyScale.reset(new_scale);
mKeyZeroPoint.reset(new_zeroPoint);
mKeySum.reset(new_sum);
} else if (mConfig.mQuantKey) {
auto new_scale = Tensor::createDevice<float>({mKvNumHead, UP_DIV(mMaxLength, hP), 1, hP});
auto new_zeroPoint = Tensor::createDevice<float>({mKvNumHead, UP_DIV(mMaxLength, hP), 1, hP});
mBackend->onAcquireBuffer(new_scale, Backend::STATIC);
mBackend->onAcquireBuffer(new_zeroPoint, Backend::STATIC);
for (int h = 0; h < mKvNumHead; h++) {
memcpy(new_scale->host<char>() + h * UP_DIV(mMaxLength, hP) * hP * mBytes, mKeyScale->host<char>() + h * UP_DIV(oldMaxLength, hP) * hP * mBytes, UP_DIV(oldMaxLength, hP) * hP * mBytes);
memcpy(new_zeroPoint->host<char>() + h * UP_DIV(mMaxLength, hP) * hP * mBytes, mKeyZeroPoint->host<char>() + h * UP_DIV(oldMaxLength, hP) * hP * mBytes, UP_DIV(oldMaxLength, hP) * hP * mBytes);
}
mKeyScale.reset(new_scale);
mKeyZeroPoint.reset(new_zeroPoint);
}
}
void KVCacheManager::onClear() {
if (mKVCacheInDisk) {
size_t keySize = 0, valueSize = 0;
if (mConfig.mUseInt8Kernel) {
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP8) * UP_DIV(mHeadDim, lP8) * hP8 * lP8;
} else if (mConfig.mQuantKey) {
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP) * mHeadDim * hP;
} else {
keySize = (size_t)mKvNumHead * UP_DIV(mMaxLength, hP) * mHeadDim * hP * mBytes;
}
valueSize = (size_t)mKvNumHead * UP_DIV(mHeadDim, hP) * mMaxLength * hP * (mConfig.mQuantValue ? 1 : mBytes);
unmapKVCache(keySize, valueSize);
removeKVCacheFile();
mKVCacheInDisk = false;
}
mPastKey.reset();
mPastValue.reset();
mKeyScale.reset();
mKeyZeroPoint.reset();
mKeySum.reset();
mMaxLength = mPastLength = 0;
}
template <typename T>
void KVCacheManager::pack_key(const Tensor* key, int seq_len, int kv_h) {
if (mConfig.mUseInt8Kernel) { // [maxlen/hP8, headdim/lP8, hP8, lP8]
int8_t * key_dst = reinterpret_cast<int8_t*>(addrOfKey(kv_h));
float * scale_dst = reinterpret_cast<float*>(addrOfScale(kv_h));
float * zeroPoint_dst = reinterpret_cast<float*>(addrOfZeroPoint(kv_h));
float * sum_dst = reinterpret_cast<float*>(addrOfKeySum(kv_h));
for (int s = 0; s < seq_len; s++) {
T * key_src = key->host<T>() + s * mKvNumHead * mHeadDim + kv_h * mHeadDim;
float minKey = key_src[0];
float maxKey = key_src[0];
float sumKey = key_src[0];
for (int d = 1; d < mHeadDim; d++) {
minKey = ALIMIN(minKey, key_src[d]);
maxKey = ALIMAX(maxKey, key_src[d]);
sumKey += key_src[d];
}
int out_index = (mPastLength + s) / hP8;
int in_index = (mPastLength + s) % hP8;
scale_dst[out_index * hP8 + in_index] = (maxKey - minKey) / 255.0f;
zeroPoint_dst[out_index * hP8 + in_index] = -255.0f * minKey / (maxKey - minKey) - 128.0;
sum_dst[out_index * hP8 + in_index] = sumKey;
for (int d = 0; d < mHeadDim; d++) {
int i = d / lP8;
int j = d % lP8;
key_dst[out_index * UP_DIV(mHeadDim, lP8) * hP8 * lP8 + i * hP8 * lP8 + in_index * lP8 + j] = roundf((key_src[d] - minKey) / (maxKey - minKey) * 255.0f - 128.0f);
}
}
}
else if (mConfig.mQuantKey) { // [maxlen/hP, headdim, hP]
int8_t * key_dst = reinterpret_cast<int8_t*>(addrOfKey(kv_h));
T * scale_dst = reinterpret_cast<T*>(addrOfScale(kv_h));
T * zeroPoint_dst = reinterpret_cast<T*>(addrOfZeroPoint(kv_h));
for (int i = 0; i < seq_len; i++) {
T * key_src = key->host<T>() + i * mKvNumHead * mHeadDim + kv_h * mHeadDim;
int out_index = (mPastLength + i) / hP;
int in_index = (mPastLength + i) % hP;
T minKey, maxKey;
static_cast<CPUBackend*>(mBackend)->functions()->MNNCountMaxMinValue((float*)key_src, (float*)&minKey, (float*)&maxKey, mHeadDim);
scale_dst[out_index * hP + in_index] = (maxKey - minKey) / 255.0f;
zeroPoint_dst[out_index * hP + in_index] = 128.0f * (maxKey - minKey) / 255.0f + minKey;
for (int j = 0; j < mHeadDim; j++) {
key_dst[out_index * mHeadDim * hP + j * hP + in_index] = roundf((key_src[j] - minKey) / (maxKey - minKey) * 255 - 128);
}
}
}
else { // [maxlen/hP, headdim, hP]
T * key_dst = reinterpret_cast<T*>(addrOfKey(kv_h));
for (int i = 0; i < seq_len; i++) {
T * key_src = key->host<T>() + i * mKvNumHead * mHeadDim + kv_h * mHeadDim;
int out_index = (mPastLength + i) / hP;
int in_index = (mPastLength + i) % hP;
for (int j = 0; j < mHeadDim; j++) {
key_dst[out_index * mHeadDim * hP + j * hP + in_index] = key_src[j];
}
}
}
}
template <typename T>
void KVCacheManager::pack_value(const Tensor* value, int seq_len, int kv_h) { // [headdim/hP, maxlen, hP]
if (mConfig.mQuantValue) {
fp8_t * value_dst = reinterpret_cast<fp8_t*>(addrOfValue(kv_h));
uint8_t * buf = (uint8_t *)MNNMemoryAllocAlign(mHeadDim, MNN_MEMORY_ALIGN_DEFAULT);
for (int i = 0; i < seq_len; i++) {
T * value_src = value->host<T>() + i * mKvNumHead * mHeadDim + kv_h * mHeadDim;
if (sizeof(T) == 2) {
static_cast<CPUBackend*>(mBackend)->functions()->MNNFp16ToFp8(buf, (uint16_t*)value_src, mHeadDim);
} else {
static_cast<CPUBackend*>(mBackend)->functions()->MNNFp32ToFp8(buf, (float*)value_src, mHeadDim);
}
for (int j = 0; j < mHeadDim; j++) {
int out_index = j / hP;
int in_index = j % hP;
value_dst[out_index * mMaxLength * hP + (mPastLength + i) * hP + in_index] = buf[j];
}
}
MNNMemoryFreeAlign(buf);
}
else {
T * value_dst = reinterpret_cast<T*>(addrOfValue(kv_h));
for (int i = 0; i < seq_len; i++) {
T * value_src = value->host<T>() + i * mKvNumHead * mHeadDim + kv_h * mHeadDim;
for (int j = 0; j < mHeadDim; j++) {
int out_index = j / hP;
int in_index = j % hP;
value_dst[out_index * mMaxLength * hP + (mPastLength + i) * hP + in_index] = value_src[j];
}
}
}
}
void KVCacheManager::onPushBack(const Tensor * key, const Tensor * value) {
auto core = static_cast<CPUBackend*>(mBackend)->functions();
int seq_len = key->shape()[1];
int tileCount = UP_DIV(mKvNumHead, mThreadNum);
std::function<void(int)> packKV = [=](int tid) {
for (int kv_h = tid * tileCount; kv_h < (tid+1) * tileCount && kv_h < mKvNumHead; kv_h++) {
if (mBytes == 2) {
pack_key<FLOAT16_T>(key, seq_len, kv_h);
pack_value<FLOAT16_T>(value, seq_len, kv_h);
} else {
pack_key<float>(key, seq_len, kv_h);
pack_value<float>(value, seq_len, kv_h);
}
}
};
MNN_CONCURRENCY_BEGIN(tid, mThreadNum) {
packKV((int)tid);
}
MNN_CONCURRENCY_END();
mPastLength += seq_len;
}
void KVCacheManager::onDequantValue(Tensor * dequantedValues) {
auto core = static_cast<CPUBackend*>(mBackend)->functions();
int tileCount = UP_DIV(mKvNumHead, mThreadNum);
std::function<void(int)> dequant = [=](int tid) {
for (int kv_h = tid * tileCount; kv_h < (tid+1) * tileCount && kv_h < mKvNumHead; kv_h++) {
char * dst = dequantedValues->host<char>() + kv_h * UP_DIV(mHeadDim, hP) * mPastLength * hP * mBytes;
char * src = addrOfValue(kv_h);
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
if (mBytes == 2) {
core->MNNFp8ToFp16((uint16_t*)dst, (uint8_t*)src, mPastLength * hP);
} else {
core->MNNFp8ToFp32((float*)dst, (uint8_t*)src, mPastLength * hP);
}
dst += mPastLength * hP * mBytes;
src += mMaxLength * hP;
}
}
};
MNN_CONCURRENCY_BEGIN(tid, mThreadNum) {
dequant((int)tid);
}
MNN_CONCURRENCY_END();
}
} // namespace MNN
#endif // MNN_SUPPORT_TRANSFORMER_FUSE