mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeReduceJoin.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
class ReduceJoinComputer : public SizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(2 == inputs.size());
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
 | 
						|
        auto output = outputs[0];
 | 
						|
        auto input  = inputs[0];
 | 
						|
        auto axis   = inputs[1];
 | 
						|
 | 
						|
        // support reduce 1 dimension, only
 | 
						|
        MNN_ASSERT(axis->size() == axis->buffer().type.bytes());
 | 
						|
 | 
						|
        MNN_ASSERT(axis->host<int32_t>()[0] >= 0);
 | 
						|
        std::vector<int> shape;
 | 
						|
        for (int i = 0; i < input->buffer().dimensions; i++) {
 | 
						|
            if (i != axis->host<int32_t>()[0]) {
 | 
						|
                shape.push_back(input->buffer().dim[i].extent);
 | 
						|
            } else {
 | 
						|
                if (op->main_as_ReduceJoin()->keepDims()) {
 | 
						|
                    shape.push_back(1);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        output->buffer().dimensions = (int)shape.size();
 | 
						|
        for (int i = 0; i < shape.size(); i++) {
 | 
						|
            output->buffer().dim[i].extent = shape[i];
 | 
						|
        }
 | 
						|
        output->setType(DataType_DT_STRING);
 | 
						|
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = MNN_DATA_FORMAT_NHWC;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE_INPUTS(ReduceJoinComputer, OpType_ReduceJoin, {1});
 | 
						|
} // namespace MNN
 |