mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			230 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  CoreMLBinary.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2021/03/24.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "CoreMLBinary.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
 | 
						|
CoreMLBinary::CoreMLBinary(MNN::Backend *b, const MNN::Op *op, const std::vector<Tensor *> &inputs, const std::vector<MNN::Tensor *> &outputs) : CoreMLCommonExecution(b, op) {
 | 
						|
    initLayer();
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode CoreMLBinary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
    MNN_ASSERT(inputs.size() == 2 && outputs.size() == 1);
 | 
						|
    BinaryOpOperation binaryType;
 | 
						|
    if (mOp->type() == OpType_BinaryOp) {
 | 
						|
        binaryType = static_cast<BinaryOpOperation>(mOp->main_as_BinaryOp()->opType());
 | 
						|
    } else if (mOp->type() == OpType_Eltwise) {
 | 
						|
        auto elemType = mOp->main_as_Eltwise()->type();
 | 
						|
        switch (elemType) {
 | 
						|
            case EltwiseType_PROD:
 | 
						|
                binaryType = BinaryOpOperation_MUL;
 | 
						|
                break;
 | 
						|
            case EltwiseType_SUM:
 | 
						|
                binaryType = BinaryOpOperation_ADD;
 | 
						|
                break;
 | 
						|
            case EltwiseType_SUB:
 | 
						|
                binaryType = BinaryOpOperation_SUB;
 | 
						|
                break;
 | 
						|
            case EltwiseType_MAXIMUM:
 | 
						|
                binaryType = BinaryOpOperation_MAXIMUM;
 | 
						|
                break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    bool oneInput = false;
 | 
						|
    float constVal = 0.f;
 | 
						|
    const Tensor* input = nullptr;
 | 
						|
    if (TensorUtils::getDescribe(inputs[0])->usage == Tensor::InsideDescribe::CONSTANT) {
 | 
						|
        constVal = inputs[0]->host<float>()[0];
 | 
						|
        input = inputs[1];
 | 
						|
    } else if (TensorUtils::getDescribe(inputs[1])->usage == Tensor::InsideDescribe::CONSTANT) {
 | 
						|
        constVal = inputs[1]->host<float>()[0];
 | 
						|
        input = inputs[0];
 | 
						|
    }
 | 
						|
    switch (binaryType) {
 | 
						|
        case BinaryOpOperation_ADD:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ADD;
 | 
						|
            mLayer_->add = mCoreMLBackend->create<CoreML__Specification__AddLayerParams>();
 | 
						|
            core_ml__specification__add_layer_params__init(mLayer_->add);
 | 
						|
            if (input) {
 | 
						|
                mLayer_->add->alpha = constVal;
 | 
						|
                oneInput = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_SUB:
 | 
						|
            if (input) {
 | 
						|
                mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ACTIVATION;
 | 
						|
                mLayer_->activation = mCoreMLBackend->create<CoreML__Specification__ActivationParams>();
 | 
						|
                core_ml__specification__activation_params__init(mLayer_->activation);
 | 
						|
                mLayer_->activation->nonlinearity_type_case = CORE_ML__SPECIFICATION__ACTIVATION_PARAMS__NONLINEARITY_TYPE_LINEAR;
 | 
						|
                mLayer_->activation->linear = mCoreMLBackend->create<CoreML__Specification__ActivationLinear>();
 | 
						|
                core_ml__specification__activation_linear__init(mLayer_->activation->linear);
 | 
						|
                mLayer_->activation->linear->alpha = 1;
 | 
						|
                mLayer_->activation->linear->beta = -constVal;
 | 
						|
                oneInput = true;
 | 
						|
            } else {
 | 
						|
                mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_SUBTRACT_BROADCASTABLE;
 | 
						|
                mLayer_->subtractbroadcastable = mCoreMLBackend->create<CoreML__Specification__SubtractBroadcastableLayerParams>();
 | 
						|
                core_ml__specification__subtract_broadcastable_layer_params__init(mLayer_->subtractbroadcastable);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_MUL:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MULTIPLY;
 | 
						|
            mLayer_->multiply = mCoreMLBackend->create<CoreML__Specification__MultiplyLayerParams>();
 | 
						|
            core_ml__specification__multiply_layer_params__init(mLayer_->multiply);
 | 
						|
            if (input) {
 | 
						|
                mLayer_->multiply->alpha = constVal;
 | 
						|
                oneInput = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_DIV:
 | 
						|
        case BinaryOpOperation_REALDIV:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_DIVIDE_BROADCASTABLE;
 | 
						|
            mLayer_->dividebroadcastable = mCoreMLBackend->create<CoreML__Specification__DivideBroadcastableLayerParams>();
 | 
						|
            core_ml__specification__divide_broadcastable_layer_params__init(mLayer_->dividebroadcastable);
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_POW:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_POW_BROADCASTABLE;
 | 
						|
            mLayer_->powbroadcastable = mCoreMLBackend->create<CoreML__Specification__PowBroadcastableLayerParams>();
 | 
						|
            core_ml__specification__pow_broadcastable_layer_params__init(mLayer_->powbroadcastable);
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_MINIMUM:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MIN;
 | 
						|
            mLayer_->min = mCoreMLBackend->create<CoreML__Specification__MinLayerParams>();
 | 
						|
            core_ml__specification__min_layer_params__init(mLayer_->min);
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_MAXIMUM:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MAX;
 | 
						|
            mLayer_->max = mCoreMLBackend->create<CoreML__Specification__MaxLayerParams>();
 | 
						|
            core_ml__specification__max_layer_params__init(mLayer_->max);
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_GREATER:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_THAN;
 | 
						|
            mLayer_->greaterthan = mCoreMLBackend->create<CoreML__Specification__GreaterThanLayerParams>();
 | 
						|
            core_ml__specification__greater_than_layer_params__init(mLayer_->greaterthan);
 | 
						|
            if (input) {
 | 
						|
                mLayer_->greaterthan->alpha = constVal;
 | 
						|
                oneInput = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_GREATER_EQUAL:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_EQUAL;
 | 
						|
            mLayer_->greaterequal = mCoreMLBackend->create<CoreML__Specification__GreaterEqualLayerParams>();
 | 
						|
            core_ml__specification__greater_equal_layer_params__init(mLayer_->greaterequal);
 | 
						|
            if (input) {
 | 
						|
                mLayer_->greaterequal->alpha = constVal;
 | 
						|
                oneInput = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_LESS:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LESS_THAN;
 | 
						|
            mLayer_->lessthan = mCoreMLBackend->create<CoreML__Specification__LessThanLayerParams>();
 | 
						|
            core_ml__specification__less_than_layer_params__init(mLayer_->lessthan);
 | 
						|
            if (input) {
 | 
						|
                mLayer_->lessthan->alpha = constVal;
 | 
						|
                oneInput = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_LESS_EQUAL:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LESS_EQUAL;
 | 
						|
            mLayer_->lessequal = mCoreMLBackend->create<CoreML__Specification__LessEqualLayerParams>();
 | 
						|
            core_ml__specification__less_equal_layer_params__init(mLayer_->lessequal);
 | 
						|
            if (input) {
 | 
						|
                mLayer_->lessequal->alpha = constVal;
 | 
						|
                oneInput = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_FLOORDIV:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_FLOOR_DIV_BROADCASTABLE;
 | 
						|
            mLayer_->floordivbroadcastable = mCoreMLBackend->create<CoreML__Specification__FloorDivBroadcastableLayerParams>();
 | 
						|
            core_ml__specification__floor_div_broadcastable_layer_params__init(mLayer_->floordivbroadcastable);
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_EQUAL:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_EQUAL;
 | 
						|
            mLayer_->equal = mCoreMLBackend->create<CoreML__Specification__EqualLayerParams>();
 | 
						|
            core_ml__specification__equal_layer_params__init(mLayer_->equal);
 | 
						|
            if (input) {
 | 
						|
                mLayer_->equal->alpha = constVal;
 | 
						|
                oneInput = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_NOTEQUAL:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_NOT_EQUAL;
 | 
						|
            mLayer_->notequal = mCoreMLBackend->create<CoreML__Specification__NotEqualLayerParams>();
 | 
						|
            core_ml__specification__not_equal_layer_params__init(mLayer_->notequal);
 | 
						|
            if (input) {
 | 
						|
                mLayer_->notequal->alpha = constVal;
 | 
						|
                oneInput = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_MOD:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MOD_BROADCASTABLE;
 | 
						|
            mLayer_->modbroadcastable = mCoreMLBackend->create<CoreML__Specification__ModBroadcastableLayerParams>();
 | 
						|
            core_ml__specification__mod_broadcastable_layer_params__init(mLayer_->modbroadcastable);
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_ATAN2:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_THAN;
 | 
						|
            mLayer_->atan = mCoreMLBackend->create<CoreML__Specification__AtanLayerParams>();
 | 
						|
            core_ml__specification__atan_layer_params__init(mLayer_->atan);
 | 
						|
            break;
 | 
						|
        case BinaryOpOperation_LOGICALOR:
 | 
						|
            mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LOGICAL_OR;
 | 
						|
            mLayer_->logicalor = mCoreMLBackend->create<CoreML__Specification__LogicalOrLayerParams>();
 | 
						|
            core_ml__specification__logical_or_layer_params__init(mLayer_->logicalor);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            MNN_ERROR("NPU Binary not support %s\n", MNN::EnumNameBinaryOpOperation(binaryType));
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    std::string binartInputName;
 | 
						|
    if(oneInput) {
 | 
						|
        binartInputName = mCoreMLBackend->getTensorName(input);
 | 
						|
    } else {
 | 
						|
        binartInputName = mCoreMLBackend->getTensorName(inputs[0]);
 | 
						|
    }
 | 
						|
    std::string binaryOutputName = mCoreMLBackend->getTensorName(outputs[0]);
 | 
						|
    int activationType = 0;
 | 
						|
    if(mOp->type() == OpType_BinaryOp) {
 | 
						|
        activationType = mOp->main_as_BinaryOp()->activationType();
 | 
						|
    }
 | 
						|
    if (activationType == 1) {
 | 
						|
        binaryOutputName = binartInputName + "-" + binaryOutputName + "-Relu";
 | 
						|
    }
 | 
						|
 | 
						|
    if (oneInput) {
 | 
						|
        setLayerInputsAndOutputs(mLayer_, {mCoreMLBackend->getTensorName(input)}, {binaryOutputName});
 | 
						|
    } else {
 | 
						|
        setLayerInputsAndOutputs(mLayer_, {mCoreMLBackend->getTensorName(inputs[0]), mCoreMLBackend->getTensorName(inputs[1])}, {binaryOutputName});
 | 
						|
    }
 | 
						|
    mCoreMLBackend->addLayer(mLayer_);
 | 
						|
 | 
						|
    if (activationType == 1) {
 | 
						|
        auto reluLayer = mCoreMLBackend->create<CoreML__Specification__NeuralNetworkLayer>();
 | 
						|
        core_ml__specification__neural_network_layer__init(reluLayer);
 | 
						|
        mCoreMLBackend->setLayerName(reluLayer, "BinaryRelu");
 | 
						|
        reluLayer->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ACTIVATION;
 | 
						|
        reluLayer->activation = mCoreMLBackend->create<CoreML__Specification__ActivationParams>();
 | 
						|
        core_ml__specification__activation_params__init(reluLayer->activation);
 | 
						|
        reluLayer->activation->nonlinearity_type_case = CORE_ML__SPECIFICATION__ACTIVATION_PARAMS__NONLINEARITY_TYPE_RE_LU;
 | 
						|
        reluLayer->activation->relu = mCoreMLBackend->create<CoreML__Specification__ActivationReLU>();
 | 
						|
        core_ml__specification__activation_re_lu__init(reluLayer->activation->relu);
 | 
						|
        setLayerInputsAndOutputs(reluLayer, {binaryOutputName}, {mCoreMLBackend->getTensorName(outputs[0])});
 | 
						|
        mCoreMLBackend->addLayer(reluLayer);
 | 
						|
    }
 | 
						|
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
REGISTER_COREML_OP_CREATOR(CoreMLBinary, OpType_BinaryOp)
 | 
						|
REGISTER_COREML_OP_CREATOR(CoreMLBinary, OpType_Eltwise)
 | 
						|
 | 
						|
} // namespace MNN
 |