MNN/source/backend/coreml/execution/CoreMLPool.cpp

127 lines
6.8 KiB
C++

//
// CoreMLPool.cpp
// MNN
//
// Created by MNN on 2021/03/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CoreMLPool.hpp"
namespace MNN {
CoreMLPool::CoreMLPool(MNN::Backend *b, const MNN::Op *op, const std::vector<Tensor *> &inputs, const std::vector<MNN::Tensor *> &outputs) : CoreMLCommonExecution(b, op) {
initLayer();
}
void CoreMLPool::addPadLayer(const Tensor * input, const Pool* common) {
MNN_ASSERT(common->padType() == PoolPadType_CAFFE);
int top, left, bottom, right;
if (nullptr != common->pads()) {
MNN_ASSERT(common->pads()->size() >= 4);
top = common->pads()->Get(0);
left = common->pads()->Get(1);
bottom = common->pads()->Get(2);
right = common->pads()->Get(3);
} else {
top = common->padY();
left = common->padX();
bottom = common->padY();
right = common->padX();
}
if (top == 0 && left == 0 && bottom == 0 && right == 0) {
return;
}
auto paddingLayer = mCoreMLBackend->create<CoreML__Specification__NeuralNetworkLayer>();
core_ml__specification__neural_network_layer__init(paddingLayer);
paddingLayer->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_PADDING;
mCoreMLBackend->setLayerName(paddingLayer, "PoolPadding");
paddingLayer->padding = mCoreMLBackend->create<CoreML__Specification__PaddingLayerParams>();
core_ml__specification__padding_layer_params__init(paddingLayer->padding);
paddingLayer->padding->padding_type_case = CORE_ML__SPECIFICATION__PADDING_LAYER_PARAMS__PADDING_TYPE_CONSTANT;
paddingLayer->padding->constant = mCoreMLBackend->create<CoreML__Specification__PaddingLayerParams__PaddingConstant>();
core_ml__specification__padding_layer_params__padding_constant__init(paddingLayer->padding->constant);
paddingLayer->padding->constant->value = 0;
paddingLayer->padding->paddingamounts = mCoreMLBackend->create<CoreML__Specification__BorderAmounts>();
core_ml__specification__border_amounts__init(paddingLayer->padding->paddingamounts);
paddingLayer->padding->paddingamounts->n_borderamounts = 2;
paddingLayer->padding->paddingamounts->borderamounts = mCoreMLBackend->create<CoreML__Specification__BorderAmounts__EdgeSizes*>(2);
paddingLayer->padding->paddingamounts->borderamounts[0] = mCoreMLBackend->create<CoreML__Specification__BorderAmounts__EdgeSizes>();
core_ml__specification__border_amounts__edge_sizes__init(paddingLayer->padding->paddingamounts->borderamounts[0]);
paddingLayer->padding->paddingamounts->borderamounts[0]->startedgesize = top;
paddingLayer->padding->paddingamounts->borderamounts[0]->endedgesize = bottom;
paddingLayer->padding->paddingamounts->borderamounts[1] = mCoreMLBackend->create<CoreML__Specification__BorderAmounts__EdgeSizes>();
core_ml__specification__border_amounts__edge_sizes__init(paddingLayer->padding->paddingamounts->borderamounts[1]);
paddingLayer->padding->paddingamounts->borderamounts[1]->startedgesize = left;
paddingLayer->padding->paddingamounts->borderamounts[1]->endedgesize = right;
auto inputName = mPoolInputName;
mPoolInputName = mPoolInputName + "-" + mPoolOutputName + "-Padding";
setLayerInputsAndOutputs(paddingLayer, {inputName}, {mPoolInputName});
mCoreMLBackend->addLayer(paddingLayer);
}
ErrorCode CoreMLPool::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(inputs.size() == 1 && outputs.size() == 1);
mPoolInputName = mCoreMLBackend->getTensorName(inputs[0]);
mPoolOutputName = mCoreMLBackend->getTensorName(outputs[0]);
auto pool = mOp->main_as_Pool();
auto strideX = pool->strideX();
auto strideY = pool->strideY();
auto kernelX = pool->kernelX();
auto kernelY = pool->kernelY();
auto padMod = pool->padType();
auto global = pool->isGlobal();
mLayer_->pooling = mCoreMLBackend->create<CoreML__Specification__PoolingLayerParams>();
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_POOLING;
core_ml__specification__pooling_layer_params__init(mLayer_->pooling);
mLayer_->pooling->globalpooling = global;
mLayer_->pooling->n_stride = 2;
mLayer_->pooling->stride = mCoreMLBackend->create<uint64_t>(mLayer_->pooling->n_stride);
mLayer_->pooling->stride[0] = strideY;
mLayer_->pooling->stride[1] = strideX;
mLayer_->pooling->n_kernelsize = 2;
mLayer_->pooling->kernelsize = mCoreMLBackend->create<uint64_t>(mLayer_->pooling->n_kernelsize);
mLayer_->pooling->kernelsize[0] = kernelY;
mLayer_->pooling->kernelsize[1] = kernelX;
switch (padMod) {
case PoolPadType_SAME:
mLayer_->pooling->pooling_padding_type_case = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_PADDING_TYPE_SAME;
mLayer_->pooling->same = mCoreMLBackend->create<CoreML__Specification__SamePadding>();
core_ml__specification__same_padding__init(mLayer_->pooling->same);
break;
case PoolPadType_VALID:
mLayer_->pooling->pooling_padding_type_case = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_PADDING_TYPE_VALID;
mLayer_->pooling->valid = mCoreMLBackend->create<CoreML__Specification__ValidPadding>();
core_ml__specification__valid_padding__init(mLayer_->pooling->valid);
break;
case PoolPadType_CAFFE:
if ((pool->pads() && pool->pads()->size() > 0) || pool->padX() > 0) {
addPadLayer(inputs[0], pool);
mLayer_->pooling->pooling_padding_type_case = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_PADDING_TYPE_VALID;
mLayer_->pooling->valid = mCoreMLBackend->create<CoreML__Specification__ValidPadding>();
core_ml__specification__valid_padding__init(mLayer_->pooling->valid);
} else {
mLayer_->pooling->pooling_padding_type_case = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_PADDING_TYPE_INCLUDE_LAST_PIXEL;
mLayer_->pooling->includelastpixel = mCoreMLBackend->create<CoreML__Specification__PoolingLayerParams__ValidCompletePadding>();
core_ml__specification__pooling_layer_params__valid_complete_padding__init(mLayer_->pooling->includelastpixel);
}
break;
default:
break;
}
if (pool->type() == PoolType_AVEPOOL) {
mLayer_->pooling->type = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_TYPE__AVERAGE;
mLayer_->pooling->avgpoolexcludepadding = true;
} else {
mLayer_->pooling->type = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_TYPE__MAX;
}
setLayerInputsAndOutputs(mLayer_, {mPoolInputName}, {mPoolOutputName});
mCoreMLBackend->addLayer(mLayer_);
return NO_ERROR;
}
REGISTER_COREML_OP_CREATOR(CoreMLPool, OpType_Pooling)
} // namespace MNN