mirror of https://github.com/alibaba/MNN.git
147 lines
4.8 KiB
C
147 lines
4.8 KiB
C
// c-api-examples/vad-moonshine-c-api.c
|
|
//
|
|
// Copyright (c) 2024 Xiaomi Corporation
|
|
|
|
//
|
|
// This file demonstrates how to use VAD + Moonshine with sherpa-onnx's C API.
|
|
// clang-format off
|
|
//
|
|
// wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
|
|
// wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/Obama.wav
|
|
//
|
|
// wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-moonshine-tiny-en-int8.tar.bz2
|
|
// tar xvf sherpa-onnx-moonshine-tiny-en-int8.tar.bz2
|
|
// rm sherpa-onnx-moonshine-tiny-en-int8.tar.bz2
|
|
//
|
|
// clang-format on
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "sherpa-mnn/c-api/c-api.h"
|
|
|
|
int32_t main() {
|
|
const char *wav_filename = "./Obama.wav";
|
|
const char *vad_filename = "./silero_vad.onnx";
|
|
|
|
const char *preprocessor =
|
|
"./sherpa-onnx-moonshine-tiny-en-int8/preprocess.onnx";
|
|
const char *encoder = "./sherpa-onnx-moonshine-tiny-en-int8/encode.int8.onnx";
|
|
const char *uncached_decoder =
|
|
"./sherpa-onnx-moonshine-tiny-en-int8/uncached_decode.int8.onnx";
|
|
const char *cached_decoder =
|
|
"./sherpa-onnx-moonshine-tiny-en-int8/cached_decode.int8.onnx";
|
|
const char *tokens = "./sherpa-onnx-moonshine-tiny-en-int8/tokens.txt";
|
|
|
|
const SherpaMnnWave *wave = SherpaMnnReadWave(wav_filename);
|
|
if (wave == NULL) {
|
|
fprintf(stderr, "Failed to read %s\n", wav_filename);
|
|
return -1;
|
|
}
|
|
|
|
if (wave->sample_rate != 16000) {
|
|
fprintf(stderr, "Expect the sample rate to be 16000. Given: %d\n",
|
|
wave->sample_rate);
|
|
SherpaMnnFreeWave(wave);
|
|
return -1;
|
|
}
|
|
|
|
// Offline model config
|
|
SherpaMnnOfflineModelConfig offline_model_config;
|
|
memset(&offline_model_config, 0, sizeof(offline_model_config));
|
|
offline_model_config.debug = 0;
|
|
offline_model_config.num_threads = 1;
|
|
offline_model_config.provider = "cpu";
|
|
offline_model_config.tokens = tokens;
|
|
offline_model_config.moonshine.preprocessor = preprocessor;
|
|
offline_model_config.moonshine.encoder = encoder;
|
|
offline_model_config.moonshine.uncached_decoder = uncached_decoder;
|
|
offline_model_config.moonshine.cached_decoder = cached_decoder;
|
|
|
|
// Recognizer config
|
|
SherpaMnnOfflineRecognizerConfig recognizer_config;
|
|
memset(&recognizer_config, 0, sizeof(recognizer_config));
|
|
recognizer_config.decoding_method = "greedy_search";
|
|
recognizer_config.model_config = offline_model_config;
|
|
|
|
const SherpaMnnOfflineRecognizer *recognizer =
|
|
SherpaMnnCreateOfflineRecognizer(&recognizer_config);
|
|
|
|
if (recognizer == NULL) {
|
|
fprintf(stderr, "Please check your recognizer config!\n");
|
|
SherpaMnnFreeWave(wave);
|
|
return -1;
|
|
}
|
|
|
|
SherpaMnnVadModelConfig vadConfig;
|
|
memset(&vadConfig, 0, sizeof(vadConfig));
|
|
vadConfig.silero_vad.model = vad_filename;
|
|
vadConfig.silero_vad.threshold = 0.5;
|
|
vadConfig.silero_vad.min_silence_duration = 0.5;
|
|
vadConfig.silero_vad.min_speech_duration = 0.5;
|
|
vadConfig.silero_vad.max_speech_duration = 10;
|
|
vadConfig.silero_vad.window_size = 512;
|
|
vadConfig.sample_rate = 16000;
|
|
vadConfig.num_threads = 1;
|
|
vadConfig.debug = 1;
|
|
|
|
SherpaMnnVoiceActivityDetector *vad =
|
|
SherpaMnnCreateVoiceActivityDetector(&vadConfig, 30);
|
|
|
|
if (vad == NULL) {
|
|
fprintf(stderr, "Please check your recognizer config!\n");
|
|
SherpaMnnFreeWave(wave);
|
|
SherpaMnnDestroyOfflineRecognizer(recognizer);
|
|
return -1;
|
|
}
|
|
|
|
int32_t window_size = vadConfig.silero_vad.window_size;
|
|
int32_t i = 0;
|
|
int is_eof = 0;
|
|
|
|
while (!is_eof) {
|
|
if (i + window_size < wave->num_samples) {
|
|
SherpaMnnVoiceActivityDetectorAcceptWaveform(vad, wave->samples + i,
|
|
window_size);
|
|
} else {
|
|
SherpaMnnVoiceActivityDetectorFlush(vad);
|
|
is_eof = 1;
|
|
}
|
|
while (!SherpaMnnVoiceActivityDetectorEmpty(vad)) {
|
|
const SherpaMnnSpeechSegment *segment =
|
|
SherpaMnnVoiceActivityDetectorFront(vad);
|
|
|
|
const SherpaMnnOfflineStream *stream =
|
|
SherpaMnnCreateOfflineStream(recognizer);
|
|
|
|
SherpaMnnAcceptWaveformOffline(stream, wave->sample_rate,
|
|
segment->samples, segment->n);
|
|
|
|
SherpaMnnDecodeOfflineStream(recognizer, stream);
|
|
|
|
const SherpaMnnOfflineRecognizerResult *result =
|
|
SherpaMnnGetOfflineStreamResult(stream);
|
|
|
|
float start = segment->start / 16000.0f;
|
|
float duration = segment->n / 16000.0f;
|
|
float stop = start + duration;
|
|
|
|
fprintf(stderr, "%.3f -- %.3f: %s\n", start, stop, result->text);
|
|
|
|
SherpaMnnDestroyOfflineRecognizerResult(result);
|
|
SherpaMnnDestroyOfflineStream(stream);
|
|
|
|
SherpaMnnDestroySpeechSegment(segment);
|
|
SherpaMnnVoiceActivityDetectorPop(vad);
|
|
}
|
|
i += window_size;
|
|
}
|
|
|
|
SherpaMnnDestroyOfflineRecognizer(recognizer);
|
|
SherpaMnnDestroyVoiceActivityDetector(vad);
|
|
SherpaMnnFreeWave(wave);
|
|
|
|
return 0;
|
|
}
|