MNN/source/backend/cpu/compute/ConvolutionInt8Executor.cpp

271 lines
11 KiB
C++

//
// ConvolutionInt8Executor.cpp
// MNN
//
// Created by MNN on 2018/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/compute/ConvolutionInt8Executor.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "core/Concurrency.h"
#include "backend/cpu/compute/ConvOpt.h"
#include "backend/cpu/compute/ConvolutionIntFactory.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "backend/cpu/compute/Int8FunctionsOpt.h"
#define MNN_OPEN_TIME_TRACE
#include <MNN/AutoTime.hpp>
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
#ifdef MNN_USE_SSE
extern "C" {
void MNNInt8ToUInt8(void* ptr, int count);
}
#endif
namespace MNN {
ConvolutionInt8Executor::ConvolutionInt8Executor(const Convolution2DCommon* convOp, Backend* b,
const ConvolutionCommon::Int8Common* common, const float* bias,
size_t biasSize) : MNN::CPUConvolution(convOp, b) {
auto core = static_cast<CPUBackend*>(b)->int8Functions();
int UNIT, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
mBias.reset(ROUND_UP(biasSize, UNIT));
mBias.clear();
auto biasDest = mBias.get();
mAMin = common->quan->aMin();
mAMax = common->quan->aMax();
mQuanScale = common->quan->quantScale();
// The postTreat will contain scale_bias and biasRelu, so the bias will be add twice
for (int i = 0; i < biasSize; ++i) {
biasDest[i] = bias[i] * 0.5f;
}
int outputCount = (int)biasSize;
mQuan = common->quan;
MNN_ASSERT(nullptr != mQuan);
mAlpha.reset(ROUND_UP(common->alpha.size(), UNIT));
mAlpha.clear();
::memcpy(mAlpha.get(), common->alpha.get(), common->alpha.size() * sizeof(float));
auto weightLength = common->weight.size();
mSrcCount = (int)weightLength / mCommon->kernelX() / mCommon->kernelY() / outputCount;
auto kx = mCommon->kernelX();
auto ky = mCommon->kernelY();
auto kernelCount = kx * ky;
auto srcCount = mSrcCount;
auto outputCountUnit = UP_DIV(outputCount, UNIT);
auto srcCountUnit = UP_DIV(srcCount, UNIT);
auto totalKernelCountD8 = UP_DIV(srcCountUnit * kx * ky, SRC_UNIT / UNIT);
mWeight.reset(Tensor::createDevice<int8_t>(std::vector<int>{outputCountUnit, totalKernelCountD8, UNIT, SRC_UNIT}));
mFakeBias.reset(Tensor::createDevice<int32_t>({(int)ROUND_UP(biasSize, UNIT)}));
mValid = b->onAcquireBuffer(mWeight.get(), Backend::STATIC);
mValid &= b->onAcquireBuffer(mFakeBias.get(), Backend::STATIC);
if (!mValid) {
MNN_ERROR("Memory not enough\n");
return;
}
::memset(mWeight->host<int8_t>(), 0, mWeight->size());
auto dst = mWeight->host<int8_t>();
for (int k = 0; k < kernelCount; ++k) {
auto srcK = common->weight.get() + k;
for (int y = 0; y < srcCount; ++y) {
int yOutSide = y / UNIT;
int yInside = y % UNIT;
int yIndex = yOutSide + k * srcCountUnit;
int ySubOutside = yIndex / (SRC_UNIT / UNIT);
int ySubInside = yIndex % (SRC_UNIT / UNIT);
auto dstY = dst + ySubOutside * mWeight->stride(1) + ySubInside * UNIT + yInside;
auto srcY = srcK + y * kernelCount;
for (int x = 0; x < outputCount; ++x) {
int xOutSide = x / UNIT;
int xInside = x % UNIT;
auto dstX = dstY + xOutSide * mWeight->stride(0) + xInside * SRC_UNIT;
auto srcX = srcY + x * kernelCount * srcCount;
dstX[0] = srcX[0];
}
}
}
::memset(mFakeBias->host<int32_t>(), 0, mFakeBias->size());
#ifdef MNN_USE_SSE
for (int oz = 0; oz < outputCount; ++oz) {
auto srcZ = common->weight.get() + oz * kernelCount * srcCount;
int32_t offset = 0;
for (int i = 0; i < kernelCount * srcCount; ++i) {
offset += srcZ[i] * (-128);
}
mFakeBias->host<int32_t>()[oz] = offset;
}
#endif
}
ConvolutionInt8Executor::~ConvolutionInt8Executor() {
if (mWeight != nullptr) {
backend()->onReleaseBuffer(mWeight.get(), Backend::STATIC);
}
if (mFakeBias != nullptr) {
backend()->onReleaseBuffer(mFakeBias.get(), Backend::STATIC);
}
}
ErrorCode ConvolutionInt8Executor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
int UNIT, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
CPUConvolution::onResize(inputs, outputs);
int tileCount = UP_DIV(outputs[0]->width() * outputs[0]->height(), DST_XUNIT);
auto outputCountUnit = UP_DIV(outputs[0]->channel(), UNIT);
int number = std::max(((CPUBackend*)backend())->threadNumber(), 1);
number = std::min(number, tileCount);
mIm2ColParamter.dilateX = mCommon->dilateX();
mIm2ColParamter.dilateY = mCommon->dilateY();
mIm2ColParamter.strideX = mCommon->strideX();
mIm2ColParamter.strideY = mCommon->strideY();
mIm2ColParamter.padX = mPadX;
mIm2ColParamter.padY = mPadY;
mIm2ColParamter.ih = inputs[0]->height();
mIm2ColParamter.iw = inputs[0]->width();
mIm2ColParamter.icDiv4 = UP_DIV(inputs[0]->channel(), UNIT);
mIm2ColParamter.ow = outputs[0]->width();
mIm2ColParamter.oh = outputs[0]->height();
mIm2ColParamter.kernelX = mCommon->kernelX();
mIm2ColParamter.kernelY = mCommon->kernelY();
mIm2ColParamter.kernelCountUnit =
UP_DIV(mIm2ColParamter.icDiv4 * mIm2ColParamter.kernelY * mIm2ColParamter.kernelX, (SRC_UNIT / UNIT));
mIm2ColParamter.srcZStep = inputs[0]->stride(1) * UNIT;
mIm2ColParamter.srcYStep = inputs[0]->stride(2) * UNIT;
TensorUtils::copyShape(inputs[0], &mSrcCopyBuffer, true);
mSrcCopyBuffer.buffer().dim[0].extent = 1;
mSrcCopyBuffer.buffer().type = halide_type_of<int8_t>();
TensorUtils::setLinearLayout(&mSrcCopyBuffer);
mTempBuffer.buffer().type = halide_type_of<int8_t>();
mTempBuffer.buffer().dimensions = 3;
mTempBuffer.buffer().dim[0].extent = number;
mTempBuffer.buffer().dim[1].extent = DST_XUNIT;
mTempBuffer.buffer().dim[2].extent = mWeight->length(1) * SRC_UNIT;
TensorUtils::setLinearLayout(&mTempBuffer);
mTempDstBuffer.buffer().type = halide_type_of<float>();
mTempDstBuffer.buffer().dimensions = 3;
mTempDstBuffer.buffer().dim[0].extent = number;
mTempDstBuffer.buffer().dim[1].extent = DST_XUNIT;
mTempDstBuffer.buffer().dim[2].extent = outputCountUnit * UNIT;
TensorUtils::setLinearLayout(&mTempDstBuffer);
bool success = backend()->onAcquireBuffer(&mSrcCopyBuffer, Backend::DYNAMIC);
success &= backend()->onAcquireBuffer(&mTempBuffer, Backend::DYNAMIC);
success &= backend()->onAcquireBuffer(&mTempDstBuffer, Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(&mSrcCopyBuffer, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mTempDstBuffer, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mTempBuffer, Backend::DYNAMIC);
mPostParameters = getPostParameters();
return NO_ERROR;
}
ErrorCode ConvolutionInt8Executor::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto coreFloat = static_cast<CPUBackend*>(backend())->functions();
auto coreInt = static_cast<CPUBackend*>(backend())->int8Functions();
int UNIT, SRC_UNIT, DST_XUNIT;
coreInt->MNNGetGemmUnit(&UNIT, &SRC_UNIT, &DST_XUNIT);
auto gemmKernel = coreInt->Int8GemmKernel;
// AUTOTIME;
auto input = inputs[0];
auto output = outputs[0];
auto weightOrigin = mWeight->host<int8_t>();
auto dstZStep = output->width() * output->height() * UNIT;
int threadNumber = 1;
auto im2ColProc = coreInt->chooseIm2Col(&mIm2ColParamter, input->channel());
int batch = input->batch();
int width = output->width();
int height = output->height();
auto ocC4 = UP_DIV(output->channel(), UNIT);
auto kernelCountUnit = mIm2ColParamter.kernelCountUnit;
int count = width * height;
float quantScale[] = {
mQuanScale,
mQuanScale,
mQuanScale,
mQuanScale
};
int8_t zeroPoint = 0;
QuanPostTreatParameters quanParam;
quanParam.bias = mFakeBias->host<int32_t>();
quanParam.scale = nullptr;
// MNN_PRINT("%s, %d, %d, %d,%d->%d,%d\n", layer->layer.layerId, layer->kernelSize[0], layer->kernelSize[1],
// input->d1, input->d2, output->d1, output->d2);
int inputTotalSize = mSrcCopyBuffer.elementSize();
int8_t* srcCopy = mSrcCopyBuffer.host<int8_t>();
for (int batchIndex = 0; batchIndex < batch; ++batchIndex) {
auto srcOrigin = input->host<float>() + input->stride(0) * batchIndex;
auto dstOrigin = output->host<float>() + output->stride(0) * batchIndex;
MNNFloat2Int8(srcOrigin, srcCopy, inputTotalSize / 4, quantScale, mAMin, mAMax, zeroPoint);
int tileCount = UP_DIV(count, DST_XUNIT);
threadNumber = std::max(((CPUBackend*)backend())->threadNumber(), 1);
threadNumber = std::min(threadNumber, tileCount);
auto outputOrigin = output->host<float>() + batchIndex * output->stride(0);
auto threadFunction = [&](int tId) {
auto colAddr = mTempBuffer.host<int8_t>() + tId * mTempBuffer.buffer().dim[0].stride;
auto gemmOutputAddr = mTempDstBuffer.host<float>() + tId * mTempDstBuffer.buffer().dim[0].stride;
for (int tIndex = (int)tId; tIndex < tileCount; tIndex += threadNumber) {
int xIndexStart = tIndex * DST_XUNIT;
int realDstCount = ALIMIN(count - xIndexStart, DST_XUNIT);
im2ColProc(colAddr, srcCopy, zeroPoint, &mIm2ColParamter, xIndexStart, realDstCount);
auto outputInTile = outputOrigin + xIndexStart * UNIT;
// GEMM
#ifdef MNN_USE_SSE
const int col_buffer_size = mIm2ColParamter.kernelCountUnit * DST_XUNIT * SRC_UNIT;
MNNInt8ToUInt8(colAddr, col_buffer_size);
#endif
gemmKernel((int8_t*)outputInTile, colAddr, weightOrigin, kernelCountUnit, dstZStep * sizeof(float), ocC4, &quanParam, realDstCount);
}
};
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
threadFunction((int)tId);
}
MNN_CONCURRENCY_END();
threadNumber = std::max(((CPUBackend*)backend())->threadNumber(), 1);
threadNumber = std::min(threadNumber, ocC4);
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
for (int z = (int)tId; z < ocC4; z += threadNumber) {
coreFloat->MNNScaleAndAddBias(dstOrigin + z * dstZStep, dstOrigin + z * dstZStep, mBias.get() + UNIT * z,
mAlpha.get() + UNIT * z, width * height, 1);
coreFloat->MNNAxByClampBroadcastUnit(dstOrigin + z * dstZStep, dstOrigin + z * dstZStep, mBias.get() + UNIT * z, width * height, 0, 0, 1, mPostParameters.data());
}
}
MNN_CONCURRENCY_END();
}
return NO_ERROR;
}
} // namespace MNN