MNN/source/backend/cpu/compute/ConvolutionTiledExecutor.cpp

88 lines
2.4 KiB
C++

//
// ConvolutionTiledExecutor.cpp
// MNN
//
// Created by MNN on 2018/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "ConvolutionTiledExecutor.hpp"
#include <MNN/AutoTime.hpp>
#include "backend/cpu/CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "core/Concurrency.h"
#include "ConvOpt.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "math/Vec.hpp"
#include "core/BufferAllocator.hpp"
#include "common/MemoryFormater.h"
using Vec4 = MNN::Math::Vec<float, 4>;
namespace MNN {
void ConvolutionTiledExecutor::initWeight(const float *source, float* cache, int depth, int outputCount, int kernelSize, const CoreFunctions* function) {
// Swap k, ic
int dims[4] = {
depth,
kernelSize,
kernelSize,
depth
};
for (int o=0; o<outputCount; ++o) {
auto dO = cache + o * depth * kernelSize;
auto sO = source + o * depth * kernelSize;
MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
}
if (function->bytes < 4) {
// Lowp
function->MNNFp32ToLowp((float*)cache, (int16_t*)cache, outputCount * kernelSize * depth);
}
}
ConvolutionTiledExecutor::ConvolutionTiledExecutor(Backend* b, const float* bias, size_t biasSize)
: MNN::Execution(b) {
mResource.reset(new CPUConvolution::Resource);
mResource->backend = b;
mValid = mResource->copyBiasAlign(bias, biasSize);
if (!mValid) {
return;
}
}
ConvolutionTiledExecutor::ConvolutionTiledExecutor(std::shared_ptr<CPUConvolution::Resource> res, Backend* b) : mResource(res), Execution(b) {
}
ConvolutionTiledExecutor::~ConvolutionTiledExecutor() {
// Do nothing
}
bool ConvolutionTiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new ConvolutionTiledExecutor(mResource, bn);
return true;
}
ErrorCode ConvolutionTiledImpl::onResize(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
return NO_ERROR;
}
ErrorCode ConvolutionTiledImpl::onExecute(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
MNN_CONCURRENCY_BEGIN(tId, mFunction.first) {
mFunction.second((int)tId);
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
} // namespace MNN