mirror of https://github.com/alibaba/MNN.git
247 lines
10 KiB
C++
247 lines
10 KiB
C++
//
|
|
// CPUConcat.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/07/06.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUConcat.hpp"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
using namespace std;
|
|
|
|
namespace MNN {
|
|
|
|
static int _concatWidth(const Tensor* outputTensor, const vector<Tensor*>& inputTensors) {
|
|
auto outputDim = outputTensor->buffer().dim;
|
|
const int depthQuad = UP_DIV(outputDim[1].extent, 4);
|
|
const int height = outputDim[2].extent;
|
|
const int width = outputDim[3].extent;
|
|
const int outputPlaneStride = 4 * height * width;
|
|
const int outputLineStride = 4 * width;
|
|
|
|
int batchSize = outputDim[0].extent;
|
|
|
|
for (int batchIndex = 0; batchIndex < batchSize; ++batchIndex) {
|
|
int currentPositionW = 0;
|
|
float* outputOrigin = reinterpret_cast<float*>(outputTensor->buffer().host) + outputDim[0].stride * batchIndex;
|
|
|
|
for (size_t b = 0; b < inputTensors.size(); b++) {
|
|
auto& inputTensor = inputTensors[b]->buffer();
|
|
float* inputOrigin = reinterpret_cast<float*>(inputTensor.host) + inputTensor.dim[0].stride * batchIndex;
|
|
int inputPlaneStride = inputTensor.dim[3].extent * inputTensor.dim[2].extent * 4;
|
|
int inputLineStride = inputTensor.dim[3].extent * 4;
|
|
int inputW = inputTensor.dim[3].extent;
|
|
for (int z = 0; z < depthQuad; ++z) {
|
|
float* dstZ = outputOrigin + outputPlaneStride * z;
|
|
float* srcZ = inputOrigin + inputPlaneStride * z;
|
|
for (int y = 0; y < height; ++y) {
|
|
float* dstY = dstZ + outputLineStride * y + currentPositionW * 4;
|
|
float* srcY = srcZ + inputLineStride * y;
|
|
memcpy(dstY, srcY, 4 * inputW * sizeof(float));
|
|
}
|
|
}
|
|
currentPositionW += inputW;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _concatHeight(const Tensor* outputTensor, const vector<Tensor*>& inputTensors) {
|
|
auto outputDim = outputTensor->buffer().dim;
|
|
const int batchSize = outputDim[0].extent;
|
|
const int depthQuad = UP_DIV(outputDim[1].extent, 4);
|
|
const int height = outputDim[2].extent;
|
|
const int width = outputDim[3].extent;
|
|
const int outputPlaneStride = 4 * height * width;
|
|
const int outputLineStride = 4 * width;
|
|
for (int batchIndex = 0; batchIndex < batchSize; ++batchIndex) {
|
|
float* outputOrigin = reinterpret_cast<float*>(outputTensor->buffer().host) + outputDim[0].stride * batchIndex;
|
|
int currentPositionH = 0;
|
|
for (size_t b = 0; b < inputTensors.size(); b++) {
|
|
auto& inputTensor = inputTensors[b]->buffer();
|
|
float* inputOrigin = reinterpret_cast<float*>(inputTensor.host) + inputTensor.dim[0].stride * batchIndex;
|
|
int inputPlaneStride = inputTensor.dim[2].extent * inputTensor.dim[3].extent * 4;
|
|
int inputH = inputTensor.dim[2].extent;
|
|
for (int z = 0; z < depthQuad; ++z) {
|
|
float* dstZ = outputOrigin + outputPlaneStride * z;
|
|
float* srcZ = inputOrigin + inputPlaneStride * z;
|
|
|
|
memcpy(dstZ + currentPositionH * outputLineStride, srcZ, inputPlaneStride * sizeof(float));
|
|
}
|
|
currentPositionH += inputH;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _concatBatch(const Tensor* outputTensor, const vector<Tensor*>& inputTensors) {
|
|
auto outputDim = outputTensor->buffer().dim;
|
|
const int batchSize = outputDim[0].extent;
|
|
for (int batchIndex = 0; batchIndex < batchSize; ++batchIndex) {
|
|
float* outputOrigin = reinterpret_cast<float*>(outputTensor->buffer().host) + outputDim[0].stride * batchIndex;
|
|
for (size_t b = 0; b < inputTensors.size(); b++) {
|
|
auto& inputTensor = inputTensors[b]->buffer();
|
|
float* inputOrigin = reinterpret_cast<float*>(inputTensor.host) + inputTensor.dim[0].stride * batchIndex;
|
|
::memcpy(outputOrigin, inputOrigin, inputTensor.dim[0].stride * sizeof(float));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _concatChannel(const Tensor* outputTensor, const vector<Tensor*>& inputTensors, bool useSlowMethod,
|
|
const Tensor* tempOutputTensor) {
|
|
auto outputDim = outputTensor->buffer().dim;
|
|
float* outputOrigin = reinterpret_cast<float*>(outputTensor->buffer().host);
|
|
int batchSize = outputDim[0].extent;
|
|
|
|
if (useSlowMethod) {
|
|
auto tempOutput = tempOutputTensor->host<float>();
|
|
MNN_ASSERT(nullptr != tempOutput);
|
|
for (int batchIndex = 0; batchIndex < batchSize; ++batchIndex) {
|
|
float* currentOutput = tempOutput;
|
|
for (int b = 0; b < inputTensors.size(); b++) {
|
|
auto inputTensor = inputTensors[b];
|
|
|
|
int size = inputTensor->width() * inputTensor->height() * inputTensor->channel();
|
|
MNNUnpackC4(currentOutput, inputTensor->host<float>() + inputTensor->stride(0) * batchIndex,
|
|
inputTensor->width() * inputTensor->height(), inputTensor->channel());
|
|
currentOutput += size;
|
|
}
|
|
MNNPackC4(outputTensor->host<float>() + batchIndex * outputTensor->stride(0), tempOutput,
|
|
outputTensor->width() * outputTensor->height(), outputTensor->channel());
|
|
}
|
|
return 0;
|
|
}
|
|
for (int batchIndex = 0; batchIndex < batchSize; ++batchIndex) {
|
|
int currentPositionZ = 0;
|
|
for (size_t b = 0; b < inputTensors.size(); b++) {
|
|
auto& inputTensor = inputTensors[b]->buffer();
|
|
float* inputOrigin = reinterpret_cast<float*>(inputTensor.host) + inputTensor.dim[0].stride * batchIndex;
|
|
int inputZ = UP_DIV(inputTensor.dim[1].extent, 4);
|
|
float* dst = outputOrigin + outputDim[1].stride * currentPositionZ * 4 + outputDim[0].stride * batchIndex;
|
|
float* src = inputOrigin;
|
|
|
|
memcpy(dst, src, outputDim[1].stride * 4 * inputZ * sizeof(float));
|
|
currentPositionZ += inputZ;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _concatTf(const Tensor* outputTensor, const vector<Tensor*>& inputTensors, int axis) {
|
|
auto& ob = outputTensor->buffer();
|
|
int outsideSize = 1;
|
|
for (int i = 0; i < axis; ++i) {
|
|
outsideSize *= ob.dim[i].extent;
|
|
}
|
|
int insideStride = ob.type.bytes();
|
|
for (int i = axis + 1; i < ob.dimensions; ++i) {
|
|
insideStride *= ob.dim[i].extent;
|
|
}
|
|
int outsideStride = insideStride * ob.dim[axis].extent;
|
|
|
|
int sumAxis = 0;
|
|
uint8_t* outputOrigin = reinterpret_cast<uint8_t*>(outputTensor->buffer().host);
|
|
for (size_t b = 0; b < inputTensors.size(); b++) {
|
|
auto& inputTensor = inputTensors[b]->buffer();
|
|
if (0 == inputTensor.dimensions) {
|
|
continue;
|
|
}
|
|
uint8_t* inputOrigin = reinterpret_cast<uint8_t*>(inputTensor.host);
|
|
int inputPlaneStride = inputTensor.dim[axis].extent * insideStride;
|
|
|
|
for (int z = 0; z < outsideSize; ++z) {
|
|
uint8_t* dstZ = outputOrigin + outsideStride * z + sumAxis * insideStride;
|
|
uint8_t* srcZ = inputOrigin + inputPlaneStride * z;
|
|
|
|
memcpy(dstZ, srcZ, inputPlaneStride);
|
|
}
|
|
sumAxis += inputTensor.dim[axis].extent;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ErrorCode CPUConcat::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
MNN_ASSERT(outputs.size() == 1);
|
|
MNN_ASSERT(inputs.size() >= 2);
|
|
auto output = outputs[0];
|
|
mUseSlowMethod = false;
|
|
mTempOutput.reset();
|
|
if (output->buffer().dimensions > 1 && TensorUtils::getDescribe(output)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
|
|
if (1 == mAxis) {
|
|
// The last tensor needn't be aligned
|
|
for (size_t b = 0; b < inputs.size() - 1; b++) {
|
|
if (inputs[b]->length(1) % 4 != 0) {
|
|
mUseSlowMethod = true;
|
|
break;
|
|
}
|
|
}
|
|
if (mUseSlowMethod) {
|
|
mTempOutput.reset(Tensor::createDevice<float>(output->shape()));
|
|
mTempOutput->setLength(0, 1);
|
|
bool success = backend()->onAcquireBuffer(mTempOutput.get(), Backend::DYNAMIC);
|
|
if (false == success) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
backend()->onReleaseBuffer(mTempOutput.get(), Backend::DYNAMIC);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPUConcat::onExecute(const vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
MNN_ASSERT(1 == outputs.size());
|
|
MNN_ASSERT(inputs.size() >= 2);
|
|
auto input = inputs[0];
|
|
if (input->buffer().dimensions > 1 && TensorUtils::getDescribe(input)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
|
|
switch (mAxis) {
|
|
case 0:
|
|
_concatBatch(outputs[0], inputs);
|
|
break;
|
|
case 1:
|
|
_concatChannel(outputs[0], inputs, mUseSlowMethod, mTempOutput.get());
|
|
break;
|
|
case 2:
|
|
_concatHeight(outputs[0], inputs);
|
|
break;
|
|
case 3:
|
|
_concatWidth(outputs[0], inputs);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
int axis = mAxis;
|
|
// tf concat
|
|
_concatTf(outputs[0], inputs, axis);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUConcatCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const {
|
|
auto axis = op->main_as_Axis();
|
|
if (nullptr != axis) {
|
|
if (axis->axis() < 0) {
|
|
return new CPUConcat(backend, outputs[0]->dimensions() + axis->axis());
|
|
}
|
|
return new CPUConcat(backend, axis->axis());
|
|
}
|
|
return new CPUConcat(backend, 0);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUConcatCreator, OpType_Concat);
|
|
} // namespace MNN
|