mirror of https://github.com/alibaba/MNN.git
413 lines
18 KiB
C++
413 lines
18 KiB
C++
//
|
|
// CPUConvInt8.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/5/17.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUConvInt8.hpp"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
#include "core/Concurrency.h"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include <math.h>
|
|
|
|
#define UNIT 4
|
|
#define SRC_UNIT 16
|
|
|
|
#ifdef __aarch64__
|
|
#define DST_XUNIT 4
|
|
#else
|
|
#define DST_XUNIT 2
|
|
#endif
|
|
|
|
extern "C" {
|
|
void MNNGemmInt8AddBiasScale_16x4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, const int32_t* bias,
|
|
const float* scale, size_t src_depth_quad, size_t dst_step,
|
|
size_t dst_depth_quad);
|
|
}
|
|
|
|
namespace MNN {
|
|
|
|
#ifndef MNN_USE_NEON
|
|
inline int8_t int32ToInt8(int data, int bias, float scale) {
|
|
float value = (float)(data + bias) * scale;
|
|
value = std::max(value, -127.0f);
|
|
value = std::min(value, 127.0f);
|
|
return static_cast<int8_t>(roundf(value));
|
|
}
|
|
|
|
static void MNNGemmInt8AddBiasScale_16x4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, const int32_t* bias,
|
|
const float* scale, size_t src_depth_quad, size_t dst_step,
|
|
size_t dst_depth_quad) {
|
|
const auto dst_step_tmp = dst_step / sizeof(int8_t);
|
|
for (int dz = 0; dz < dst_depth_quad; ++dz) {
|
|
const auto weight_dz = weight + dz * src_depth_quad * (UNIT * SRC_UNIT);
|
|
const auto bias_dz = bias + dz * UNIT;
|
|
const auto scale_dz = scale + dz * UNIT;
|
|
auto dst_z = dst + dz * dst_step_tmp;
|
|
for (int w = 0; w < DST_XUNIT; ++w) {
|
|
const auto src_x = src + w * SRC_UNIT;
|
|
auto dst_x = dst_z + w * UNIT;
|
|
int32_t dstTemp[4] = {0, 0, 0, 0};
|
|
|
|
for (int sz = 0; sz < src_depth_quad; ++sz) {
|
|
const auto weight_sz = weight_dz + (UNIT * SRC_UNIT) * sz;
|
|
const auto src_z = src_x + sz * DST_XUNIT * SRC_UNIT;
|
|
|
|
for (int j = 0; j < UNIT; ++j) {
|
|
const auto weight_j = weight_sz + j * SRC_UNIT;
|
|
for (int i = 0; i < SRC_UNIT; ++i) {
|
|
dstTemp[j] += (int32_t)src_z[i] * (int32_t)weight_j[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
dst_x[j] = int32ToInt8(dstTemp[j], bias_dz[j], scale_dz[j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
static void _fastIm2Col(int8_t* colAddr, const int8_t* inputOrigin,
|
|
const CPUConvolution::Im2ColParameter* im2colParameter, size_t xIndexStart,
|
|
size_t realDstCount) {
|
|
const int col_buffer_size = im2colParameter->kernelCountUnit * DST_XUNIT * SRC_UNIT * sizeof(int8_t);
|
|
::memset(colAddr, 0, col_buffer_size);
|
|
const int icDiv8 = im2colParameter->icDiv4 / 2;
|
|
const int srcZStep = im2colParameter->iw * im2colParameter->ih * 4;
|
|
inputOrigin += xIndexStart * UNIT;
|
|
for (int i = 0; i < realDstCount; ++i) {
|
|
auto colAddrI = colAddr + SRC_UNIT * i;
|
|
auto inputK = inputOrigin + UNIT * i;
|
|
for (int sz = 0; sz < icDiv8; ++sz) {
|
|
auto inputZ0 = inputK + srcZStep * (2 * sz + 0);
|
|
auto inputZ1 = inputK + srcZStep * (2 * sz + 1);
|
|
const int indexOutside = sz / 2;
|
|
const int indexInsize = sz % 2;
|
|
|
|
auto dstK0 = colAddrI + (indexOutside * DST_XUNIT * 2 + indexInsize) * (2 * UNIT);
|
|
auto dstK1 = dstK0 + UNIT;
|
|
*((int32_t*)dstK0) = *((int32_t*)inputZ0);
|
|
*((int32_t*)dstK1) = *((int32_t*)inputZ1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _im2colCommonZ1(int8_t* colAddr, const int8_t* inputOrigin,
|
|
const CPUConvolution::Im2ColParameter* im2colParameter, size_t xIndexStart,
|
|
size_t realDstCount) {
|
|
int col_buffer_size = im2colParameter->kernelCountUnit * DST_XUNIT * SRC_UNIT * sizeof(int8_t);
|
|
::memset(colAddr, 0, col_buffer_size);
|
|
auto ih = im2colParameter->ih;
|
|
auto iw = im2colParameter->iw;
|
|
auto kh = im2colParameter->kernelY;
|
|
auto kw = im2colParameter->kernelX;
|
|
auto dilateX = im2colParameter->dilateX;
|
|
auto dilateY = im2colParameter->dilateY;
|
|
constexpr int dstXStepInt32 = SRC_UNIT * DST_XUNIT / sizeof(int32_t);
|
|
for (int i = 0; i < realDstCount; ++i) {
|
|
int xIndex = (int)xIndexStart + i;
|
|
int ox = xIndex % im2colParameter->ow;
|
|
int oy = xIndex / im2colParameter->ow;
|
|
|
|
int sx = ox * im2colParameter->strideX - im2colParameter->padX;
|
|
int sy = oy * im2colParameter->strideY - im2colParameter->padY;
|
|
|
|
int sfy = ALIMAX(0, (UP_DIV(-sy, im2colParameter->dilateX)));
|
|
int efy = ALIMIN(kh, UP_DIV(ih - sy, im2colParameter->dilateY));
|
|
int sfx = ALIMAX(0, (UP_DIV(-sx, im2colParameter->dilateX)));
|
|
int efx = ALIMIN(kw, UP_DIV(iw - sx, im2colParameter->dilateX));
|
|
int fyC = efy - sfy;
|
|
int fxC = efx - sfx;
|
|
|
|
auto colAddrI = colAddr + SRC_UNIT * i;
|
|
auto inputOffset = inputOrigin + (sx + sfx * dilateX + (sy + sfy * dilateY) * iw) * UNIT;
|
|
auto indexOffset = sfy * kw + sfx;
|
|
for (int fy = 0; fy < fyC; ++fy) {
|
|
for (int fx = 0; fx < fxC; ++fx) {
|
|
auto inputK = inputOffset + (fx * dilateX + fy * dilateY * iw) * UNIT;
|
|
auto indexStart = indexOffset + fy * kw + fx;
|
|
auto indexInside = indexStart % 4;
|
|
auto indexOutside = indexStart / 4;
|
|
auto dstK0 = (int32_t*)colAddrI + indexOutside * dstXStepInt32 + indexInside;
|
|
dstK0[0] = *((int32_t*)inputK);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _im2colCommon(int8_t* colAddr, const int8_t* inputOrigin,
|
|
const CPUConvolution::Im2ColParameter* im2colParameter, size_t xIndexStart,
|
|
size_t realDstCount) {
|
|
const int col_buffer_size = im2colParameter->kernelCountUnit * DST_XUNIT * SRC_UNIT * sizeof(int8_t);
|
|
::memset(colAddr, 0, col_buffer_size);
|
|
auto ih = im2colParameter->ih;
|
|
auto iw = im2colParameter->iw;
|
|
auto kh = im2colParameter->kernelY;
|
|
auto kw = im2colParameter->kernelX;
|
|
auto dilateX = im2colParameter->dilateX;
|
|
auto dilateY = im2colParameter->dilateY;
|
|
auto icDiv4 = im2colParameter->icDiv4;
|
|
auto srcZStep = iw * ih * UNIT;
|
|
constexpr int dstXStepInt32 = SRC_UNIT * DST_XUNIT / sizeof(int32_t);
|
|
for (int i = 0; i < realDstCount; ++i) {
|
|
int xIndex = (int)xIndexStart + i;
|
|
int ox = xIndex % im2colParameter->ow;
|
|
int oy = xIndex / im2colParameter->ow;
|
|
|
|
int sx = ox * im2colParameter->strideX - im2colParameter->padX;
|
|
int sy = oy * im2colParameter->strideY - im2colParameter->padY;
|
|
|
|
int sfy = ALIMAX(0, (UP_DIV(-sy, im2colParameter->dilateX)));
|
|
int efy = ALIMIN(kh, UP_DIV(ih - sy, im2colParameter->dilateY));
|
|
int sfx = ALIMAX(0, (UP_DIV(-sx, im2colParameter->dilateX)));
|
|
int efx = ALIMIN(kw, UP_DIV(iw - sx, im2colParameter->dilateX));
|
|
int fyC = efy - sfy;
|
|
int fxC = efx - sfx;
|
|
|
|
auto colAddrI = colAddr + SRC_UNIT * i;
|
|
auto inputOffset = inputOrigin + (sx + sfx * dilateX + (sy + sfy * dilateY) * iw) * UNIT;
|
|
auto indexOffset = (sfy * kw + sfx) * icDiv4;
|
|
for (int fy = 0; fy < fyC; ++fy) {
|
|
for (int fx = 0; fx < fxC; ++fx) {
|
|
auto inputK = inputOffset + (fx * dilateX + fy * dilateY * iw) * UNIT;
|
|
auto indexStart = indexOffset + (fy * kw + fx) * icDiv4;
|
|
for (int sz = 0; sz < icDiv4; ++sz) {
|
|
const int yIndex = indexStart + sz;
|
|
const int ySubOutside = yIndex / UNIT;
|
|
const int ySubInside = yIndex % UNIT;
|
|
auto dstK0 = (int32_t*)colAddrI + ySubOutside * dstXStepInt32 + ySubInside;
|
|
dstK0[0] = *((int32_t*)inputK);
|
|
inputK += srcZStep;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
CPUConvInt8::~CPUConvInt8() {
|
|
backend()->onReleaseBuffer(mWeightInt8.get(), Backend::STATIC);
|
|
backend()->onReleaseBuffer(mBiasInt32.get(), Backend::STATIC);
|
|
backend()->onReleaseBuffer(mScaleFloat.get(), Backend::STATIC);
|
|
}
|
|
CPUConvInt8::CPUConvInt8(Backend* backend, const MNN::Convolution2D* convParam, const std::vector<Tensor*>& inptus)
|
|
: CPUConvolution(convParam->common(), backend) {
|
|
const auto convCommon = convParam->common();
|
|
const auto kx = convCommon->kernelX();
|
|
const auto ky = convCommon->kernelY();
|
|
const auto kernelCount = kx * ky;
|
|
const auto srcCount = inptus[0]->channel();
|
|
const auto outputCount = convCommon->outputCount();
|
|
const auto outputCountUnit = UP_DIV(outputCount, UNIT);
|
|
const auto srcCountUnit = UP_DIV(srcCount, UNIT);
|
|
const auto totalKernelCountD8 = UP_DIV(srcCountUnit * kernelCount, 2);
|
|
const auto totalKernelCountD8Div2 = UP_DIV(totalKernelCountD8, 2);
|
|
mWeightInt8.reset(Tensor::createDevice<int8_t>({outputCountUnit, totalKernelCountD8Div2, UNIT, SRC_UNIT}));
|
|
auto allocRes = backend->onAcquireBuffer(mWeightInt8.get(), Backend::STATIC);
|
|
if (!allocRes) {
|
|
mValid = false;
|
|
return;
|
|
}
|
|
const int oneTileLen = mWeightInt8->stride(1);
|
|
const int outputChnnelStride = mWeightInt8->stride(0);
|
|
const auto weightSrc = convParam->symmetricQuan()->weight()->data();
|
|
auto weightDst = mWeightInt8->host<int8_t>();
|
|
memset(weightDst, 0, mWeightInt8->size());
|
|
// reorder weight
|
|
for (int k = 0; k < kernelCount; ++k) {
|
|
const auto srcK = weightSrc + k;
|
|
for (int y = 0; y < srcCount; ++y) {
|
|
const int yOutSide = y / UNIT;
|
|
const int yInSide = y % UNIT;
|
|
const int yIndex = yOutSide + k * srcCountUnit;
|
|
const int ySubOutSide = yIndex / UNIT;
|
|
const int ySubInSide = yIndex % UNIT;
|
|
|
|
auto dstY = weightDst + ySubOutSide * oneTileLen + ySubInSide * UNIT + yInSide;
|
|
const auto srcY = srcK + y * kernelCount;
|
|
for (int x = 0; x < outputCount; ++x) {
|
|
const int xOutSide = x / UNIT;
|
|
const int xInSide = x % UNIT;
|
|
const int dstIndex = xOutSide * outputChnnelStride + xInSide * SRC_UNIT;
|
|
const int srcIndex = x * kernelCount * srcCount;
|
|
dstY[dstIndex] = srcY[srcIndex];
|
|
}
|
|
}
|
|
}
|
|
const int outputChannleUp4 = ALIGN_UP4(outputCount);
|
|
mBiasInt32.reset(Tensor::createDevice<int32_t>({outputChannleUp4}));
|
|
allocRes = backend->onAcquireBuffer(mBiasInt32.get(), Backend::STATIC);
|
|
if (!allocRes) {
|
|
mValid = false;
|
|
return;
|
|
}
|
|
auto biasPtr = mBiasInt32->host<int32_t>();
|
|
memset(biasPtr, 0, outputChannleUp4 * sizeof(int32_t));
|
|
memcpy(biasPtr, convParam->symmetricQuan()->bias()->data(), outputCount * sizeof(int32_t));
|
|
|
|
mScaleFloat.reset(Tensor::createDevice<float>({outputChannleUp4}));
|
|
allocRes = backend->onAcquireBuffer(mScaleFloat.get(), Backend::STATIC);
|
|
if (!allocRes) {
|
|
mValid = false;
|
|
return;
|
|
}
|
|
|
|
auto scalePtr = mScaleFloat->host<float>();
|
|
memset(scalePtr, 0, outputChannleUp4 * sizeof(float));
|
|
memcpy(scalePtr, convParam->symmetricQuan()->scale()->data(), outputCount * sizeof(float));
|
|
|
|
mIm2ColParamter.dilateX = convCommon->dilateX();
|
|
mIm2ColParamter.dilateY = convCommon->dilateY();
|
|
mIm2ColParamter.strideX = convCommon->strideX();
|
|
mIm2ColParamter.strideY = convCommon->strideY();
|
|
mIm2ColParamter.padX = convCommon->padX();
|
|
mIm2ColParamter.padY = convCommon->padY();
|
|
mIm2ColParamter.icDiv4 = srcCountUnit;
|
|
mIm2ColParamter.kernelX = convCommon->kernelX();
|
|
mIm2ColParamter.kernelY = convCommon->kernelY();
|
|
mIm2ColParamter.kernelCountUnit = totalKernelCountD8Div2;
|
|
|
|
mRelu = convCommon->relu() || convCommon->relu6();
|
|
}
|
|
|
|
ErrorCode CPUConvInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
CPUConvolution::onResize(inputs, outputs);
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
|
|
mIm2ColParamter.padX = mPadX;
|
|
mIm2ColParamter.padY = mPadY;
|
|
|
|
mIm2ColParamter.ih = input->height();
|
|
mIm2ColParamter.iw = input->width();
|
|
mIm2ColParamter.oh = output->height();
|
|
mIm2ColParamter.ow = output->width();
|
|
|
|
mTileCount = UP_DIV(output->height() * output->width(), DST_XUNIT);
|
|
const int threads = std::max(static_cast<CPUBackend*>(backend())->threadNumber(), 1);
|
|
mThreadNums = std::min(threads, mTileCount);
|
|
|
|
// set im2col tensor info
|
|
mTempIm2ColBuffer.setType(DataType_DT_INT8);
|
|
mTempIm2ColBuffer.buffer().dimensions = 3;
|
|
mTempIm2ColBuffer.setLength(0, mThreadNums);
|
|
mTempIm2ColBuffer.setLength(1, DST_XUNIT);
|
|
mTempIm2ColBuffer.setLength(2, mWeightInt8->length(1) * SRC_UNIT);
|
|
TensorUtils::setLinearLayout(&mTempIm2ColBuffer);
|
|
|
|
// set reamin tensor info
|
|
mTempRemainBuffer.setType(DataType_DT_INT8);
|
|
mTempRemainBuffer.buffer().dimensions = 3;
|
|
mTempRemainBuffer.setLength(0, mThreadNums);
|
|
mTempRemainBuffer.setLength(1, DST_XUNIT);
|
|
mTempRemainBuffer.setLength(2, ALIGN_UP4(output->channel()));
|
|
TensorUtils::setLinearLayout(&mTempRemainBuffer);
|
|
|
|
bool success = backend()->onAcquireBuffer(&mTempIm2ColBuffer, Backend::DYNAMIC);
|
|
success = success && backend()->onAcquireBuffer(&mTempRemainBuffer, Backend::DYNAMIC);
|
|
if (!success) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
|
|
backend()->onReleaseBuffer(&mTempIm2ColBuffer, Backend::DYNAMIC);
|
|
backend()->onReleaseBuffer(&mTempRemainBuffer, Backend::DYNAMIC);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPUConvInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
const auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
|
|
const int outputPlaneLen = output->height() * output->width();
|
|
const int dstZStep = outputPlaneLen * 4;
|
|
|
|
const int batch = input->batch();
|
|
const int ocDiv4 = UP_DIV(output->channel(), 4);
|
|
const auto kernelCountUnitDouble = mIm2ColParamter.kernelCountUnit;
|
|
|
|
bool fastIm2Col = mIm2ColParamter.kernelX == 1 && mIm2ColParamter.kernelY == 1 && mIm2ColParamter.icDiv4 % 2 == 0 &&
|
|
mIm2ColParamter.strideX == 1 && mIm2ColParamter.strideY == 1 && mIm2ColParamter.padX == 0 &&
|
|
mIm2ColParamter.padY == 0;
|
|
auto im2ColProcess = _im2colCommon;
|
|
if (fastIm2Col) {
|
|
im2ColProcess = _fastIm2Col;
|
|
} else if (input->channel() <= 4) {
|
|
im2ColProcess = _im2colCommonZ1;
|
|
}
|
|
|
|
const auto inputDataPtr = input->host<int8_t>();
|
|
|
|
const auto weightDataPtr = mWeightInt8->host<int8_t>();
|
|
const auto biasDataPtr = mBiasInt32->host<int32_t>();
|
|
const auto scaleDataPtr = mScaleFloat->host<float>();
|
|
auto im2colPtr = mTempIm2ColBuffer.host<int8_t>();
|
|
auto outputDataPtr = output->host<int8_t>();
|
|
auto tempRemainPtr = mTempRemainBuffer.host<int8_t>();
|
|
for (int bIndex = 0; bIndex < batch; ++bIndex) {
|
|
const auto srcPtr = inputDataPtr + bIndex * input->stride(0);
|
|
auto dstPtr = outputDataPtr + bIndex * output->stride(0);
|
|
|
|
auto threadFunction = [&](int tId) {
|
|
auto colAddr = im2colPtr + tId * mTempIm2ColBuffer.stride(0);
|
|
auto gemmOutputAddr = tempRemainPtr + tId * mTempRemainBuffer.stride(0);
|
|
|
|
for (int tIndex = tId; tIndex < mTileCount; tIndex += mThreadNums) {
|
|
const int xIndexStart = tIndex * DST_XUNIT;
|
|
const int realDstCount = ALIMIN(outputPlaneLen - xIndexStart, DST_XUNIT);
|
|
// im2col
|
|
im2ColProcess(colAddr, srcPtr, &mIm2ColParamter, xIndexStart, realDstCount);
|
|
auto outputInTilePtr = dstPtr + xIndexStart * UNIT;
|
|
if (realDstCount == DST_XUNIT) {
|
|
MNNGemmInt8AddBiasScale_16x4_Unit(outputInTilePtr, colAddr, weightDataPtr, biasDataPtr,
|
|
scaleDataPtr, kernelCountUnitDouble, dstZStep * sizeof(int8_t),
|
|
ocDiv4);
|
|
} else {
|
|
MNNGemmInt8AddBiasScale_16x4_Unit(gemmOutputAddr, colAddr, weightDataPtr, biasDataPtr, scaleDataPtr,
|
|
kernelCountUnitDouble, UNIT * DST_XUNIT * sizeof(int8_t), ocDiv4);
|
|
for (int z = 0; z < ocDiv4; ++z) {
|
|
auto outputZ = outputInTilePtr + z * dstZStep;
|
|
auto srcZ = gemmOutputAddr + z * UNIT * DST_XUNIT;
|
|
memcpy(outputZ, srcZ, realDstCount * UNIT * sizeof(int8_t));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
MNN_CONCURRENCY_BEGIN(tId, mThreadNums) {
|
|
threadFunction((int)tId);
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
|
|
if (mRelu) {
|
|
int threadNumber = std::max(static_cast<CPUBackend*>(backend())->threadNumber(), 1);
|
|
threadNumber = std::min(threadNumber, ocDiv4);
|
|
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
|
|
for (int z = (int)tId; z < ocDiv4; z += threadNumber) {
|
|
MNNReluInt8(dstPtr + z * dstZStep, dstPtr + z * dstZStep, dstZStep);
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
}
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUConvInt8Creator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const override {
|
|
return new CPUConvInt8(backend, op->main_as_Convolution2D(), inputs);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUConvInt8Creator, OpType_ConvInt8);
|
|
|
|
} // namespace MNN
|