MNN/source/backend/cpu/CPUFloatToInt8.cpp

81 lines
2.9 KiB
C++

//
// CPUFloatToInt8.cpp
// MNN
//
// Created by MNN on 2019/5/22.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUFloatToInt8.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "core/Concurrency.h"
#include "backend/cpu/compute/Int8FunctionsOpt.h"
#include "core/Macro.h"
namespace MNN {
CPUFloatToInt8::CPUFloatToInt8(Backend* backend, const MNN::Op* param) : Execution(backend) {
auto scale = param->main_as_QuantizedFloatParam();
const int scaleLen = scale->tensorScale()->size();
mScales.reset(Tensor::createDevice<float>({ALIGN_UP4(scaleLen)}));
mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
if (!mValid) {
return;
}
memset(mScales->host<float>(), 0, ALIGN_UP4(scaleLen) * sizeof(float));
memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
}
CPUFloatToInt8::~CPUFloatToInt8() {
backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
}
ErrorCode CPUFloatToInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
return NO_ERROR;
}
ErrorCode CPUFloatToInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto input = inputs[0];
auto output = outputs[0];
const auto inputDataPtr = input->host<float>();
auto outputDataPtr = output->host<int8_t>();
const auto scaleDataPtr = mScales->host<float>();
const int channels = input->channel();
const int icDiv4 = UP_DIV(channels, 4);
const int batch = input->batch();
const int batchStride = input->stride(0);
const int width = input->width();
const int height = input->height();
const int oc4Stride = width * height;
auto numberThread = std::min(icDiv4, ((CPUBackend*)backend())->threadNumber());
for (int bIndex = 0; bIndex < batch; ++bIndex) {
const auto srcBatch = inputDataPtr + bIndex * batchStride;
auto dstBatch = outputDataPtr + bIndex * batchStride;
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
for (int z = (int)tId; z < icDiv4; z += numberThread) {
const auto srcChannelPtr = srcBatch + z * oc4Stride * 4;
const auto scaleChannelPtr = scaleDataPtr + z * 4;
auto dstChannlePtr = dstBatch + z * oc4Stride * 4;
MNNFloat2Int8(srcChannelPtr, dstChannlePtr, oc4Stride, scaleChannelPtr, -127, 127);
}
}
MNN_CONCURRENCY_END();
}
return NO_ERROR;
}
class CPUFloatToInt8Creator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPUFloatToInt8(backend, op);
}
};
REGISTER_CPU_OP_CREATOR(CPUFloatToInt8Creator, OpType_FloatToInt8);
} // namespace MNN