mirror of https://github.com/alibaba/MNN.git
210 lines
10 KiB
C++
210 lines
10 KiB
C++
//
|
|
// CPUQuantizedAdd.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/10/18.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
#ifdef MNN_SUPPORT_TFLITE_QUAN
|
|
#include "backend/cpu/CPUQuantizedAdd.hpp"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/CPUQuantizationUtils.hpp"
|
|
#include "core/Concurrency.h"
|
|
#include "core/Macro.h"
|
|
|
|
namespace MNN {
|
|
|
|
CPUQuantizedAdd::CPUQuantizedAdd(Backend *backend, const Op *op) : Execution(backend) {
|
|
mQuantizedAddParam = op->main_as_QuantizedAdd();
|
|
}
|
|
|
|
ErrorCode CPUQuantizedAdd::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
mInput1Offset = -mQuantizedAddParam->input1QuantizedParam()->zeroPoint();
|
|
mInput2Offset = -mQuantizedAddParam->input2QuantizedParam()->zeroPoint();
|
|
mOutputOffset = mQuantizedAddParam->outputQuantizedParam()->zeroPoint();
|
|
const int leftShift = 20;
|
|
const double twiceMaxInputScale = 2 * std::max(mQuantizedAddParam->input1QuantizedParam()->scale(),
|
|
mQuantizedAddParam->input2QuantizedParam()->scale());
|
|
const double realInput1Multiplier = mQuantizedAddParam->input1QuantizedParam()->scale() / twiceMaxInputScale;
|
|
const double realInput2Multiplier = mQuantizedAddParam->input2QuantizedParam()->scale() / twiceMaxInputScale;
|
|
const double realOutputMultiplier =
|
|
twiceMaxInputScale / ((1 << leftShift) * mQuantizedAddParam->outputQuantizedParam()->scale());
|
|
|
|
QuantizeMultiplierSmallerThanOne(realInput1Multiplier, &mInput1Multiplier, &mInput1Shift);
|
|
QuantizeMultiplierSmallerThanOne(realInput2Multiplier, &mInput2Multiplier, &mInput2Shift);
|
|
QuantizeMultiplierSmallerThanOne(realOutputMultiplier, &mOutputMultiplier, &mOutputShift);
|
|
|
|
CalculateActivationRangeUint8(
|
|
mQuantizedAddParam->activationType(), mQuantizedAddParam->outputQuantizedParam()->zeroPoint(),
|
|
mQuantizedAddParam->outputQuantizedParam()->scale(), &mOutputActivationMin, &mOutputActivationMax);
|
|
|
|
int kReverseShiftResult1 = -mInput1Shift;
|
|
int kReverseShiftResult2 = -mInput2Shift;
|
|
|
|
int leftShift1 = kReverseShiftResult1 > 0 ? kReverseShiftResult1 : 0;
|
|
mRightShift1 = kReverseShiftResult1 > 0 ? 0 : -kReverseShiftResult1;
|
|
|
|
int leftShift2 = kReverseShiftResult2 > 0 ? kReverseShiftResult2 : 0;
|
|
mRightShift2 = kReverseShiftResult2 > 0 ? 0 : -kReverseShiftResult2;
|
|
|
|
mLeftShiftOut = -mOutputShift > 0 ? -mOutputShift : 0;
|
|
mRightShiftOut = -mOutputShift > 0 ? 0 : mOutputShift;
|
|
|
|
mLeftShiftResult1 = (1 << leftShift) * ((1 << leftShift1));
|
|
mLeftShiftResult2 = (1 << leftShift) * ((1 << leftShift2));
|
|
|
|
const int left1 = leftShift + leftShift1;
|
|
const int left2 = leftShift + leftShift2;
|
|
|
|
MNN_ASSERT(left1 == leftShift);
|
|
MNN_ASSERT(left2 == leftShift);
|
|
|
|
#ifdef MNN_USE_NEON
|
|
input1OffsetVec = vdupq_n_s16(mInput1Offset);
|
|
input2OffsetVec = vdupq_n_s16(mInput2Offset);
|
|
outputOffsetVec = vdupq_n_s32(mOutputOffset);
|
|
outputActivationMinVec = vdupq_n_s32(mOutputActivationMin);
|
|
outputActivationMaxVec = vdupq_n_s32(mOutputActivationMax);
|
|
leftShiftResult1Vec = vdupq_n_s32(mLeftShiftResult1);
|
|
leftShiftResult2Vec = vdupq_n_s32(mLeftShiftResult2);
|
|
input1MultiplierVec = vdupq_n_s32(mInput1Multiplier);
|
|
input2MultiplierVec = vdupq_n_s32(mInput2Multiplier);
|
|
outputMultiplierVec = vdupq_n_s32(mOutputMultiplier);
|
|
leftShiftOutVec = vdupq_n_s32((1 << mLeftShiftOut));
|
|
rightShift1Vec = vdupq_n_s32(-mRightShift1);
|
|
rightShift2Vec = vdupq_n_s32(-mRightShift2);
|
|
#endif
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPUQuantizedAdd::onExecute(const std::vector<MNN::Tensor *> &inputs,
|
|
const std::vector<MNN::Tensor *> &outputs) {
|
|
|
|
uint8_t *input1Data = inputs[0]->host<uint8_t>();
|
|
uint8_t *input2Data = inputs[1]->host<uint8_t>();
|
|
uint8_t *outputData = outputs[0]->host<uint8_t>();
|
|
|
|
int outputChannels = inputs[0]->channel();
|
|
int size = inputs[0]->batch()*inputs[0]->height()*inputs[0]->width()*ROUND_UP(outputChannels, 4);
|
|
int threadNumber = std::max(((CPUBackend *)backend())->threadNumber(), 1);
|
|
int countUnit = UP_DIV(size, threadNumber);
|
|
|
|
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
|
|
int realDstCount = (int)ALIMIN(size - tId * countUnit, countUnit);
|
|
uint8_t *curInput1Data = input1Data + tId * countUnit;
|
|
uint8_t *curInput2Data = input2Data + tId * countUnit;
|
|
uint8_t *curOutputData = outputData + tId * countUnit;
|
|
|
|
int i = 0;
|
|
|
|
#ifdef MNN_USE_NEON
|
|
|
|
for (; i <= realDstCount - 8; i += 8) {
|
|
uint8x8_t input1Uint8 = vld1_u8(curInput1Data);
|
|
int16x8_t input1S16 = vreinterpretq_s16_u16(vmovl_u8(input1Uint8));
|
|
int16x8_t input1Val = vaddq_s16(input1S16, input1OffsetVec);
|
|
|
|
uint8x8_t input2Uint8 = vld1_u8(curInput2Data);
|
|
int16x8_t input2S16 = vreinterpretq_s16_u16(vmovl_u8(input2Uint8));
|
|
int16x8_t input2Val = vaddq_s16(input2S16, input2OffsetVec);
|
|
|
|
int32x4_t input10 = vmovl_s16(vget_low_s16(input1Val));
|
|
int32x4_t input11 = vmovl_s16(vget_high_s16(input1Val));
|
|
|
|
int32x4_t input20 = vmovl_s16(vget_low_s16(input2Val));
|
|
int32x4_t input21 = vmovl_s16(vget_high_s16(input2Val));
|
|
|
|
int32x4_t shiftedInput1ValVec0 = vmulq_s32(input10, leftShiftResult1Vec);
|
|
int32x4_t shiftedInput1ValVec1 = vmulq_s32(input11, leftShiftResult1Vec);
|
|
|
|
int32x4_t shiftedInput2ValVec0 = vmulq_s32(input20, leftShiftResult2Vec);
|
|
int32x4_t shiftedInput2ValVec1 = vmulq_s32(input21, leftShiftResult2Vec);
|
|
|
|
shiftedInput1ValVec0 = vqrdmulhq_s32(shiftedInput1ValVec0, input1MultiplierVec);
|
|
const int32x4_t fixup00 = vshrq_n_s32(vandq_s32(shiftedInput1ValVec0, rightShift1Vec), 31);
|
|
const int32x4_t fixedUpX00 = vqaddq_s32(shiftedInput1ValVec0, fixup00);
|
|
const int32x4_t scaledInput1ValVec0 = vrshlq_s32(fixedUpX00, rightShift1Vec);
|
|
|
|
shiftedInput1ValVec1 = vqrdmulhq_s32(shiftedInput1ValVec1, input1MultiplierVec);
|
|
const int32x4_t fixup01 = vshrq_n_s32(vandq_s32(shiftedInput1ValVec1, rightShift1Vec), 31);
|
|
const int32x4_t fixedUpX01 = vqaddq_s32(shiftedInput1ValVec1, fixup01);
|
|
const int32x4_t scaledInput1ValVec1 = vrshlq_s32(fixedUpX01, rightShift1Vec);
|
|
|
|
shiftedInput2ValVec0 = vqrdmulhq_s32(shiftedInput2ValVec0, input2MultiplierVec);
|
|
const int32x4_t fixup20 = vshrq_n_s32(vandq_s32(shiftedInput2ValVec0, rightShift2Vec), 31);
|
|
const int32x4_t fixedUpX20 = vqaddq_s32(shiftedInput2ValVec0, fixup20);
|
|
const int32x4_t scaledInput2ValVec0 = vrshlq_s32(fixedUpX20, rightShift2Vec);
|
|
|
|
shiftedInput2ValVec1 = vqrdmulhq_s32(shiftedInput2ValVec1, input2MultiplierVec);
|
|
const int32x4_t fixup21 = vshrq_n_s32(vandq_s32(shiftedInput2ValVec1, rightShift2Vec), 31);
|
|
const int32x4_t fixedUpX21 = vqaddq_s32(shiftedInput2ValVec1, fixup21);
|
|
const int32x4_t scaledInput2ValVec1 = vrshlq_s32(fixedUpX21, rightShift2Vec);
|
|
|
|
int32x4_t rawSum0 = vaddq_s32(scaledInput1ValVec0, scaledInput2ValVec0);
|
|
int32x4_t rawSum1 = vaddq_s32(scaledInput1ValVec1, scaledInput2ValVec1);
|
|
|
|
rawSum0 = RoundingDivideByPOT(
|
|
SaturatingRoundingDoublingHighMul(vmulq_s32(rawSum0, leftShiftOutVec), outputMultiplierVec),
|
|
mRightShiftOut);
|
|
|
|
rawSum1 = RoundingDivideByPOT(
|
|
SaturatingRoundingDoublingHighMul(vmulq_s32(rawSum1, leftShiftOutVec), outputMultiplierVec),
|
|
mRightShiftOut);
|
|
|
|
rawSum0 = vaddq_s32(rawSum0, outputOffsetVec);
|
|
rawSum1 = vaddq_s32(rawSum1, outputOffsetVec);
|
|
|
|
rawSum0 = vmaxq_s32(rawSum0, outputActivationMinVec);
|
|
rawSum1 = vmaxq_s32(rawSum1, outputActivationMinVec);
|
|
|
|
rawSum0 = vminq_s32(rawSum0, outputActivationMaxVec);
|
|
rawSum1 = vminq_s32(rawSum1, outputActivationMaxVec);
|
|
|
|
int16x4_t rawSumS16n0 = vqmovn_s32(rawSum0);
|
|
int16x4_t rawSumS16n1 = vqmovn_s32(rawSum1);
|
|
|
|
int16x8_t resS16 = vcombine_s16(rawSumS16n0, rawSumS16n1);
|
|
|
|
uint8x8_t resU8n0 = vqmovun_s16(resS16);
|
|
|
|
vst1_u8(curOutputData, resU8n0);
|
|
|
|
curInput1Data += 8;
|
|
curInput2Data += 8;
|
|
curOutputData += 8;
|
|
}
|
|
#endif
|
|
for (; i < realDstCount; i++) {
|
|
const int32_t input1Val = mInput1Offset + curInput1Data[i];
|
|
const int32_t input2Val = mInput2Offset + curInput2Data[i];
|
|
const int32_t shiftedInput1Val = input1Val * mLeftShiftResult1;
|
|
const int32_t shiftedInput2Val = input2Val * mLeftShiftResult2;
|
|
const int32_t scaledInput1Val = RoundingDivideByPOT(
|
|
SaturatingRoundingDoublingHighMul(shiftedInput1Val, mInput1Multiplier), mRightShift1);
|
|
const int32_t scaledInput2Val = RoundingDivideByPOT(
|
|
SaturatingRoundingDoublingHighMul(shiftedInput2Val, mInput2Multiplier), mRightShift2);
|
|
const int32_t rawSum = scaledInput1Val + scaledInput2Val;
|
|
const int32_t rawOutput =
|
|
RoundingDivideByPOT(SaturatingRoundingDoublingHighMul(rawSum * (1 << mLeftShiftOut), mOutputMultiplier),
|
|
mRightShiftOut) + mOutputOffset;
|
|
const int32_t clampedOutput = std::min(mOutputActivationMax, std::max(mOutputActivationMin, rawOutput));
|
|
curOutputData[i] = static_cast<uint8_t>(clampedOutput);
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUQuantizedAddCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const {
|
|
return new CPUQuantizedAdd(backend, op);
|
|
}
|
|
};
|
|
REGISTER_CPU_OP_CREATOR(CPUQuantizedAddCreator, OpType_QuantizedAdd);
|
|
} // namespace MNN
|
|
#endif
|