MNN/source/backend/cpu/CPURelu.cpp

105 lines
3.5 KiB
C++

//
// CPURelu.cpp
// MNN
//
// Created by MNN on 2018/07/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPURelu.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "core/Macro.h"
namespace MNN {
ErrorCode CPURelu::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
const float* srcO = (const float*)ib.host;
float* dstO = (float*)ob.host;
auto size = inputs[0]->size() / sizeof(float);
auto sizeQuad = size / 4;
auto remain = size - sizeQuad * 4;
MNNReluWithSlope(dstO, srcO, sizeQuad, mSlope);
if (remain > 0) {
MNNReluWithSlope(dstO + size - 4, srcO + size - 4, 1, mSlope);
}
return NO_ERROR;
}
ErrorCode CPURelu6::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
const float* srcO = (const float*)ib.host;
float* dstO = (float*)ob.host;
auto size = inputs[0]->size() / sizeof(float);
MNNRelu6(dstO, srcO, size);
return NO_ERROR;
}
CPUPRelu::CPUPRelu(Backend* b, const Op* op) : MNN::Execution(b) {
auto c = op->main_as_PRelu();
mSlope.reset(ALIGN_UP4(c->slopeCount()));
mSlope.clear();
::memcpy(mSlope.get(), c->slope()->data(), c->slopeCount() * sizeof(float));
}
ErrorCode CPUPRelu::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
const int width = ib.dim[3].extent;
const int height = ib.dim[2].extent;
const int channel = ib.dim[1].extent;
const int batch = ib.dim[0].extent;
const int depthQuad = UP_DIV(channel, 4);
const int batchSize = depthQuad * 4 * width * height;
const float* srcO = (const float*)ib.host;
float* dstO = (float*)ob.host;
int sizeQuad = width * height;
for (int b = 0; b < batch; ++b) {
auto src = srcO + b * batchSize;
auto dst = dstO + b * batchSize;
MNNReluWithSlopeChannel(dst, src, mSlope.get(), sizeQuad, depthQuad);
}
return NO_ERROR;
}
class CPUReluCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
if (op->type() == OpType_ReLU) {
auto slope = 0.0f;
if (nullptr != op->main() && OpParameter_Relu == op->main_type()) {
slope = op->main_as_Relu()->slope();
}
return new CPURelu(backend, slope);
}
MNN_ASSERT(op->type() == OpType_PReLU);
if (op->main_as_PRelu()->slopeCount() == 1) {
return new CPURelu(backend, op->main_as_PRelu()->slope()->data()[0]);
}
return new CPUPRelu(backend, op);
}
};
class CPURelu6Creator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
return new CPURelu6(backend);
}
};
REGISTER_CPU_OP_CREATOR(CPUReluCreator, OpType_ReLU);
REGISTER_CPU_OP_CREATOR(CPUReluCreator, OpType_PReLU);
REGISTER_CPU_OP_CREATOR(CPURelu6Creator, OpType_ReLU6);
} // namespace MNN