MNN/source/backend/cpu/CPUResize.cpp

373 lines
15 KiB
C++

//
// CPUResize.cpp
// MNN
//
// Created by MNN on 2018/07/17.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUResize.hpp"
#include <math.h>
#include "core/AutoStorage.h"
#include "backend/cpu/CPUBackend.hpp"
#include "core/Concurrency.h"
#include "core/Macro.h"
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
extern "C" {
void MNNCubicSampleC4(const float* src, float* dst, int32_t* position, const float* factor, size_t number);
void MNNCubicLineC4(float* dst, const float* A, const float* B, const float* C, const float* D, float* t,
size_t number);
}
namespace MNN {
static void CPUBilinearSampleC4(const float* src, float* dst, const int32_t* position, const float* factor,
size_t number) {
for (int i = 0; i < number; ++i) {
float f = factor[i];
#ifdef MNN_USE_NEON
float32x4_t df = vdupq_n_f32(f);
float32x4_t sf = vdupq_n_f32(1.0f - f);
float32x4_t A = vld1q_f32(src + position[2 * i] * 4);
float32x4_t B = vld1q_f32(src + position[2 * i + 1] * 4);
vst1q_f32(dst + 4 * i, B * df + A * sf);
#else
for (int k = 0; k < 4; ++k) {
float A = src[4 * position[2 * i + 0] + k];
float B = src[4 * position[2 * i + 1] + k];
dst[4 * i + k] = B * f + A * (1 - f);
}
#endif
}
}
static void CPUBilinearLineC4(float* dst, const float* A, const float* B, const float* t, size_t number) {
#ifdef MNN_USE_NEON
float32x4_t df = vdupq_n_f32(*t);
float32x4_t sf = vdupq_n_f32(1.0f) - df;
for (int i = 0; i < number; ++i) {
float32x4_t value = vld1q_f32(A + 4 * i) * sf + vld1q_f32(B + 4 * i) * df;
vst1q_f32(dst + 4 * i, value);
}
#else
float f = *t;
for (int i = 0; i < number; ++i) {
for (int j = 0; j < 4; ++j) {
int k = i * 4 + j;
dst[k] = A[k] * (1 - f) + B[k] * f;
}
}
#endif
}
static int CLAMP(int v, int min, int max) {
if ((v) < min) {
(v) = min;
} else if ((v) > max) {
(v) = max;
}
return v;
}
void CPUResizeCommon::CPUResizeCubicC4(halide_buffer_t& input, halide_buffer_t& output) {
const int batches = input.dim[0].extent;
const int inBatchSize = input.dim[0].stride;
const int outBatchSize = output.dim[0].stride;
const int inW = input.dim[3].extent;
const int inH = input.dim[2].extent;
const int N = input.dim[1].extent;
const int outW = output.dim[3].extent;
const int outH = output.dim[2].extent;
const int depthQuad = UP_DIV(N, 4);
AutoStorage<int> linePosition(4 * outW);
AutoStorage<float> lineFactor(outW);
auto _linePosition = linePosition.get();
auto _lineFactor = lineFactor.get();
// Compute Line Position
for (int dx = 0; dx < outW; ++dx) {
float u = ((float)dx) / ((float)(outW - 1));
float x = u * inW - 0.5f;
int xInt = (int)x;
_lineFactor[dx] = (float)(x - floor(x));
_linePosition[4 * dx + 0] = CLAMP(xInt - 1, 0, inW - 1);
_linePosition[4 * dx + 1] = CLAMP(xInt + 0, 0, inW - 1);
_linePosition[4 * dx + 2] = CLAMP(xInt + 1, 0, inW - 1);
_linePosition[4 * dx + 3] = CLAMP(xInt + 2, 0, inW - 1);
}
for (int b = 0; b < batches; ++b) {
MNN_CONCURRENCY_BEGIN(n, depthQuad);
{
int yUsed[4] = {0, 0, 0, 0};
int yCache[4] = {-1, -1, -1, -1};
AutoStorage<float> lineBuffer(16 * outW);
auto _lineBuffer = lineBuffer.get();
auto _line0 = _lineBuffer + 4 * outW * 0;
auto _line1 = _lineBuffer + 4 * outW * 1;
auto _line2 = _lineBuffer + 4 * outW * 2;
auto _line3 = _lineBuffer + 4 * outW * 3;
float* yCacheLine[4] = {_line0, _line1, _line2, _line3};
float* const yCacheStorage[4] = {_line0, _line1, _line2, _line3};
auto bottomData = reinterpret_cast<const float*>(input.host) + b * inBatchSize + (int)n * 4 * inW * inH;
auto topData = reinterpret_cast<float*>(output.host) + b * outBatchSize + (int)n * 4 * outW * outH;
for (int dy = 0; dy < outH; dy++) {
float v = ((float)dy) / ((float)(outH - 1));
float y = v * inH - 0.5f;
int yInt = (int)y;
int yp[4];
yp[0] = CLAMP(yInt - 1, 0, inH - 1);
yp[1] = CLAMP(yInt, 0, inH - 1);
yp[2] = CLAMP(yInt + 1, 0, inH - 1);
yp[3] = CLAMP(yInt + 2, 0, inH - 1);
// Search cache
for (int j = 0; j < 4; ++j) {
yUsed[j] = 0;
}
for (int j = 0; j < 4; ++j) {
int find = 0;
for (int k = 0; k < 4; ++k) {
if (yp[j] == yCache[k]) {
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
find = 1;
break;
}
}
if (!find) {
const float* bottomY0 = bottomData + yp[j] * inW * 4;
for (int k = 0; k < 4; ++k) {
if (!yUsed[k]) {
yCache[k] = yp[j];
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
MNNCubicSampleC4(bottomY0, yCacheLine[j], _linePosition, _lineFactor, outW);
break;
}
}
}
}
// Sample Input
float yFract = (float)(y - floor(y));
auto topY = topData + outW * 4 * dy;
MNNCubicLineC4(topY, yCacheLine[0], yCacheLine[1], yCacheLine[2], yCacheLine[3], &yFract, outW);
}
}
MNN_CONCURRENCY_END();
}
}
void CPUResizeCommon::CPUResizeBilinearC4(halide_buffer_t& input, halide_buffer_t& output, const int* widthPosition,
const float* widthFactor, const int* heightPosition,
const float* heightFactor, float* lineBuffer, int threadNumber) {
const int batches = input.dim[0].extent;
const int inputBatchSize = input.dim[0].stride;
const int outputBatchSize = output.dim[0].stride;
const int inW = input.dim[3].extent;
const int inH = input.dim[2].extent;
const int outW = output.dim[3].extent;
const int outH = output.dim[2].extent;
int depthQuad = UP_DIV(input.dim[1].extent, 4);
for (int b = 0; b < batches; ++b) {
auto threadFunction = [&](size_t tId) {
for (int n = (int)tId; n < depthQuad; n += threadNumber) {
auto _lineBuffer = lineBuffer + 2 * 4 * outW * tId;
auto _line0 = _lineBuffer + 4 * outW * 0;
auto _line1 = _lineBuffer + 4 * outW * 1;
int yUsed[2] = {0, 0};
int yCache[2] = {-1, -1};
float* yCacheLine[2] = {_line0, _line1};
float* const yCacheStorage[2] = {_line0, _line1};
auto bottomData =
reinterpret_cast<const float*>(input.host) + b * inputBatchSize + (int)n * 4 * inW * inH;
auto topData = reinterpret_cast<float*>(output.host) + b * outputBatchSize + (int)n * 4 * outW * outH;
for (int dy = 0; dy < outH; dy++) {
int yp[2];
yp[0] = heightPosition[2 * dy + 0];
yp[1] = heightPosition[2 * dy + 1];
// Search cache
for (int j = 0; j < 2; ++j) {
yUsed[j] = 0;
}
for (int j = 0; j < 2; ++j) {
int find = 0;
for (int k = 0; k < 2; ++k) {
if (yp[j] == yCache[k]) {
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
find = 1;
break;
}
}
if (!find) {
const float* bottomY0 = bottomData + yp[j] * inW * 4;
for (int k = 0; k < 2; ++k) {
if (!yUsed[k]) {
yCache[k] = yp[j];
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
CPUBilinearSampleC4(bottomY0, yCacheLine[j], widthPosition, widthFactor, outW);
break;
}
}
}
}
auto topY = topData + outW * 4 * dy;
// Sample Input
CPUBilinearLineC4(topY, yCacheLine[0], yCacheLine[1], &heightFactor[dy], outW);
}
}
};
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
threadFunction(tId);
}
MNN_CONCURRENCY_END();
}
}
void CPUResizeCommon::CPUResizeNearestneighborC4(halide_buffer_t& input, halide_buffer_t& output, float wScale,
float hScale) {
const int batches = input.dim[0].extent;
const int inputBatchSize = input.dim[0].stride;
const int outputBatchSize = output.dim[0].stride;
const int inW = input.dim[3].extent;
const int inH = input.dim[2].extent;
const int outW = output.dim[3].extent;
const int outH = output.dim[2].extent;
const float xScaling = wScale;
const float yScaling = hScale;
const int depthQuad = UP_DIV(input.dim[1].extent, 4);
AutoStorage<int> linePosition(outW);
auto _linePosition = linePosition.get();
for (int x = 0; x < outW; ++x) {
float src_x = x * xScaling;
int x1 = static_cast<int>(floor(src_x));
_linePosition[x] = CLAMP(x1, 0, inW - 1);
}
for (int b = 0; b < batches; ++b) {
MNN_CONCURRENCY_BEGIN(n, depthQuad) {
auto srcData =
reinterpret_cast<const float*>(input.host) + b * inputBatchSize + static_cast<int>(n) * 4 * inW * inH;
auto dstData =
reinterpret_cast<float*>(output.host) + b * outputBatchSize + static_cast<int>(n) * 4 * outW * outH;
for (int dy = 0; dy < outH; ++dy) {
float srcY = dy * yScaling;
const int y_ = CLAMP(static_cast<int>(floor(srcY)), 0, inH - 1);
auto srcDataLine = srcData + inW * 4 * y_;
auto dstDataLine = dstData + outW * 4 * dy;
for (int dx = 0; dx < outW; ++dx) {
::memcpy(dstDataLine + dx * 4, srcDataLine + _linePosition[dx] * 4, sizeof(float) * 4);
}
}
}
MNN_CONCURRENCY_END();
}
}
CPUResize::CPUResize(Backend* backend, float xScale, float yScale)
: CPUResizeCommon(backend), mXScale(xScale), mYScale(yScale) {
// nothing to do
}
CPUResize::~CPUResize() {
}
ErrorCode CPUResize::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const int inW = inputs[0]->buffer().dim[3].extent;
const int inH = inputs[0]->buffer().dim[2].extent;
const int outW = outputs[0]->buffer().dim[3].extent;
const int outH = outputs[0]->buffer().dim[2].extent;
const float xScaling = 1.0f / mXScale;
const float yScaling = 1.0f / mYScale;
mWidthPosition.buffer().dim[0].extent = 2 * outW;
mWidthPosition.buffer().dimensions = 1;
mWidthPosition.setType(DataType_DT_INT32);
backend()->onAcquireBuffer(&mWidthPosition, Backend::DYNAMIC_SEPERATE);
mWidthFactor.buffer().dim[0].extent = outW;
mWidthFactor.buffer().dimensions = 1;
mWidthFactor.setType(DataType_DT_FLOAT);
backend()->onAcquireBuffer(&mWidthFactor, Backend::DYNAMIC_SEPERATE);
auto _wPosition = mWidthPosition.host<int>();
auto _wFactor = mWidthFactor.host<float>();
// Compute Line Position
for (int x = 0; x < outW; ++x) {
float srcX = x * xScaling;
int x1 = floor(srcX);
float x2Factor = srcX - x1;
_wFactor[x] = x2Factor;
_wPosition[2 * x + 0] = CLAMP(x1, 0, inW - 1);
_wPosition[2 * x + 1] = CLAMP(x1 + 1, 0, inW - 1);
}
mHeightPosition.buffer().dim[0].extent = 2 * outH;
mHeightPosition.buffer().dimensions = 1;
mHeightPosition.setType(DataType_DT_INT32);
backend()->onAcquireBuffer(&mHeightPosition, Backend::DYNAMIC_SEPERATE);
mHeightFactor.buffer().dim[0].extent = outH;
mHeightFactor.buffer().dimensions = 1;
mHeightFactor.setType(DataType_DT_FLOAT);
backend()->onAcquireBuffer(&mHeightFactor, Backend::DYNAMIC_SEPERATE);
auto _hPosition = mHeightPosition.host<int>();
auto _hFactor = mHeightFactor.host<float>();
for (int y = 0; y < outH; ++y) {
float srcY = y * yScaling;
int y1 = floor(srcY);
float y2Factor = srcY - y1;
_hFactor[y] = y2Factor;
_hPosition[2 * y + 0] = CLAMP(y1, 0, inH - 1);
_hPosition[2 * y + 1] = CLAMP(y1 + 1, 0, inH - 1);
}
int threadNumber = ((CPUBackend*)backend())->threadNumber();
mLineBuffer.buffer().dim[0].extent = 2 * 4 * outW * threadNumber;
mLineBuffer.buffer().dimensions = 1;
mLineBuffer.setType(DataType_DT_FLOAT);
backend()->onAcquireBuffer(&mLineBuffer, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mLineBuffer, Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUResize::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto& input = inputs[0]->buffer();
auto& output = outputs[0]->buffer();
CPUResizeBilinearC4(input, output, mWidthPosition.host<int>(), mWidthFactor.host<float>(),
mHeightPosition.host<int>(), mHeightFactor.host<float>(), mLineBuffer.host<float>(),
((CPUBackend*)backend())->threadNumber());
return NO_ERROR;
}
class CPUResizeCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
auto resize = op->main_as_Resize();
return new CPUResize(backend, resize->xScale(), resize->yScale());
}
};
REGISTER_CPU_OP_CREATOR(CPUResizeCreator, OpType_Resize);
} // namespace MNN