MNN/source/backend/cpu/CPUScale.cpp

84 lines
3.2 KiB
C++

//
// CPUScale.cpp
// MNN
//
// Created by MNN on 2018/08/07.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUScale.hpp"
#include "CPUBackend.hpp"
#include "compute/CommonOptFunction.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "core/Concurrency.h"
namespace MNN {
CPUScale::CPUScale(const Op* op, Backend* bn) : MNN::Execution(bn) {
auto scale = op->main_as_Scale();
int outputCount = scale->scaleData()->size();
mScaleBias.reset(
Tensor::createDevice<float>(
{2, ALIGN_UP4(outputCount)}
));
auto res = bn->onAcquireBuffer(mScaleBias.get(), Backend::STATIC);
if (!res) {
MNN_ERROR("Error for alloc buffer for CPUScale\n");
mScaleBias = nullptr;
mValid = false;
return;
}
::memset(mScaleBias->host<float>(), 0, mScaleBias->size());
::memcpy(mScaleBias->host<float>(), scale->scaleData()->data(), outputCount * sizeof(float));
if (nullptr != scale->biasData() && nullptr != scale->biasData()->data()) {
::memcpy(mScaleBias->host<float>() + ALIGN_UP4(outputCount), scale->biasData()->data(), outputCount * sizeof(float));
}
}
CPUScale::~CPUScale() {
if (nullptr != mScaleBias) {
backend()->onReleaseBuffer(mScaleBias.get(), Backend::STATIC);
}
}
ErrorCode CPUScale::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
auto scalePtr = mScaleBias->host<float>();
auto biasPtr = mScaleBias->host<float>() + 1 * mScaleBias->length(1);
if (TensorUtils::getDescribe(input)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
auto batch = input->buffer().dim[0].extent;
auto depthQuad = UP_DIV(input->channel(), 4);
int planeNumber = 1;
for (int i = 2; i < input->buffer().dimensions; ++i) {
planeNumber *= input->length(i);
}
auto depthStride = planeNumber * 4;
auto totalDepth = batch * depthQuad;
int numberThread = ((CPUBackend*)backend())->threadNumber();
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
for (int i = tId; i < totalDepth; i+=numberThread) {
MNNScaleAndAddBias(output->host<float>() + depthStride * i, input->host<float>() + depthStride * i, biasPtr + 4 * i,
scalePtr + 4 * i, planeNumber, 1);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
MNN_ASSERT(TensorUtils::getDescribe(input)->dimensionFormat == MNN_DATA_FORMAT_NHWC);
auto channel = input->channel();
auto outside = input->elementSize() / channel;
MNNScaleAndAddBiasOutside(output->host<float>(), input->host<float>(), biasPtr, scalePtr, outside, channel);
return NO_ERROR;
}
class CPUScaleCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPUScale(op, backend);
}
};
REGISTER_CPU_OP_CREATOR(CPUScaleCreator, OpType_Scale);
} // namespace MNN