mirror of https://github.com/alibaba/MNN.git
263 lines
8.9 KiB
C++
263 lines
8.9 KiB
C++
//
|
|
// CPUSoftmax.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/07/16.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUSoftmax.hpp"
|
|
#include <math.h>
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
#include "core/Concurrency.h"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#ifdef MNN_USE_NEON
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
namespace MNN {
|
|
|
|
int CPUSoftmax::_softmax1(const float *srcData, float *dstData, int outside, int channel, int threadNum) {
|
|
MNN_CONCURRENCY_BEGIN(tId, threadNum);
|
|
{
|
|
const float *srcY = srcData + tId * channel;
|
|
float *dstY = dstData + tId * channel;
|
|
for (int y = (int)tId; y < outside; y += threadNum, srcY += channel * threadNum, dstY += channel * threadNum) {
|
|
float maxValue = srcY[0];
|
|
{
|
|
int c = 1;
|
|
#ifdef MNN_USE_NEON
|
|
#if !(defined(__ARM_FEATURE_FMA) && defined(__aarch64__))
|
|
#define vmaxvq_f32(v) \
|
|
({ \
|
|
float __m = v[0]; \
|
|
for (int i = 1; i < 4; i++) { \
|
|
if (v[i] > __m) \
|
|
__m = v[i]; \
|
|
} \
|
|
__m; \
|
|
})
|
|
#endif
|
|
if (c + 3 < channel) {
|
|
float32x4_t maxx4 = vld1q_f32(srcY + c);
|
|
c += 4;
|
|
for (; c + 3 < channel; c += 4) {
|
|
maxx4 = vmaxq_f32(maxx4, vld1q_f32(srcY + c));
|
|
}
|
|
float value = vmaxvq_f32(maxx4);
|
|
if (value > maxValue)
|
|
maxValue = value;
|
|
}
|
|
#endif
|
|
for (; c < channel; ++c) {
|
|
float value = srcY[c];
|
|
if (value > maxValue)
|
|
maxValue = value;
|
|
}
|
|
}
|
|
|
|
for (int c = 0; c < channel; ++c) {
|
|
dstY[c] = -srcY[c] + maxValue;
|
|
}
|
|
|
|
MNNExp(dstY, dstY, channel);
|
|
|
|
// sum
|
|
float sumValue = 0;
|
|
|
|
for (int c = 0; c < channel; ++c) {
|
|
sumValue += dstY[c];
|
|
}
|
|
|
|
// div
|
|
{
|
|
int c = 0;
|
|
#ifdef MNN_USE_NEON
|
|
float div = 1.f / sumValue;
|
|
for (; c + 3 < channel; c += 4) {
|
|
vst1q_f32(dstY + c, vmulq_n_f32(vld1q_f32(dstY + c), div));
|
|
}
|
|
#endif
|
|
for (; c < channel; ++c) {
|
|
dstY[c] /= sumValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
|
|
return 0;
|
|
}
|
|
int CPUSoftmax::_softmaxCommon(const float *srcData, float *dstData, int inside, int outside, int channel,
|
|
float *maxValue, float *sumValue, int threadNum) {
|
|
if (inside == 1)
|
|
return _softmax1(srcData, dstData, outside, channel, threadNum);
|
|
|
|
const int stepY = inside * channel;
|
|
MNN_CONCURRENCY_BEGIN(tId, threadNum);
|
|
{
|
|
const float *srcY = srcData + tId * stepY;
|
|
float *dstY = dstData + tId * stepY;
|
|
float *maxValueSub = maxValue + tId * inside;
|
|
float *sumValueSub = sumValue + tId * inside;
|
|
|
|
for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
|
|
memcpy(maxValueSub, srcY, sizeof(float) * inside);
|
|
const float *src = srcY + inside;
|
|
for (int c = 1; c < channel; ++c, src += inside) {
|
|
for (int x = 0; x < inside; ++x) {
|
|
if (src[x] > maxValueSub[x])
|
|
maxValueSub[x] = src[x];
|
|
}
|
|
}
|
|
memset(sumValueSub, 0, sizeof(float) * inside);
|
|
src = srcY;
|
|
float *dst = dstY;
|
|
for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
|
|
for (int x = 0; x < inside; ++x) {
|
|
dst[x] = -src[x] + maxValueSub[x];
|
|
}
|
|
}
|
|
|
|
dst = dstY;
|
|
MNNExp(dst, dst, inside * channel);
|
|
|
|
for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
|
|
for (int x = 0; x < inside; ++x) {
|
|
sumValueSub[x] += dst[x];
|
|
}
|
|
}
|
|
|
|
dst = dstY;
|
|
for (int c = 0; c < channel; ++c, dst += inside) {
|
|
for (int x = 0; x < inside; ++x) {
|
|
dst[x] /= sumValueSub[x];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
return 0;
|
|
}
|
|
|
|
ErrorCode CPUSoftmax::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto input = inputs[0];
|
|
const int dimensions = input->buffer().dimensions;
|
|
|
|
const auto layout = TensorUtils::getDescribe(input)->dimensionFormat;
|
|
mNeedUnpackC4 = layout == MNN_DATA_FORMAT_NC4HW4;
|
|
|
|
if (mNeedUnpackC4) {
|
|
int totalSize = 1;
|
|
for (int i = 0; i < dimensions; ++i) {
|
|
totalSize *= input->length(i);
|
|
}
|
|
mStorage.buffer().dim[0].extent = 1;
|
|
mStorage.buffer().dim[1].extent = totalSize;
|
|
TensorUtils::getDescribe(&mStorage)->dimensionFormat = MNN_DATA_FORMAT_NHWC;
|
|
mStorage.buffer().dimensions = 2;
|
|
mStorage.buffer().type = input->getType();
|
|
backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
|
|
}
|
|
|
|
int inside = 1;
|
|
int dims = input->buffer().dimensions;
|
|
for (int i = mAxis + 1; i < dims; ++i) {
|
|
inside *= input->length(i);
|
|
}
|
|
|
|
if (inside != 1) { // not run _softmax1, we need maxValue Tensor and sumValue Tensor.
|
|
int threadNum = ((CPUBackend *)backend())->threadNumber();
|
|
|
|
mMaxValue.buffer().dim[0].extent = inside * threadNum;
|
|
mMaxValue.buffer().dimensions = 1;
|
|
mMaxValue.setType(DataType_DT_FLOAT);
|
|
backend()->onAcquireBuffer(&mMaxValue, Backend::DYNAMIC);
|
|
|
|
mSumValue.buffer().dim[0].extent = inside * threadNum;
|
|
mSumValue.buffer().dimensions = 1;
|
|
mSumValue.setType(DataType_DT_FLOAT);
|
|
backend()->onAcquireBuffer(&mSumValue, Backend::DYNAMIC);
|
|
|
|
backend()->onReleaseBuffer(&mMaxValue, Backend::DYNAMIC);
|
|
backend()->onReleaseBuffer(&mSumValue, Backend::DYNAMIC);
|
|
}
|
|
|
|
if (mNeedUnpackC4) {
|
|
backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPUSoftmax::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
MNN_ASSERT(1 == inputs.size());
|
|
MNN_ASSERT(1 == outputs.size());
|
|
auto inputTensor = inputs[0];
|
|
auto outputTensor = outputs[0];
|
|
const auto inputDataPtr = inputTensor->host<float>();
|
|
auto outputDataPtr = outputTensor->host<float>();
|
|
const int batch = inputTensor->batch();
|
|
const auto dims = inputTensor->buffer().dimensions;
|
|
|
|
float *tempData = nullptr;
|
|
if (mNeedUnpackC4) {
|
|
tempData = mStorage.host<float>();
|
|
}
|
|
|
|
int areaInput = 1;
|
|
for (int i = 2; i < dims; ++i) {
|
|
areaInput *= inputTensor->length(i);
|
|
}
|
|
int inside = 1;
|
|
int outside = 1;
|
|
int channel = 1;
|
|
for (int i = 1; i < mAxis; ++i) {
|
|
outside *= inputTensor->length(i);
|
|
}
|
|
channel = inputTensor->length(mAxis);
|
|
for (int i = mAxis + 1; i < dims; ++i) {
|
|
inside *= inputTensor->length(i);
|
|
}
|
|
|
|
int threadNum = ((CPUBackend *)backend())->threadNumber();
|
|
int batchSize = outputTensor->size() / sizeof(float) / batch;
|
|
for (int batchIndex = 0; batchIndex < batch; ++batchIndex) {
|
|
auto inputData = inputDataPtr + batchIndex * batchSize;
|
|
auto outputData = outputDataPtr + batchIndex * batchSize;
|
|
if (1 == areaInput || !mNeedUnpackC4) {
|
|
_softmaxCommon(inputData, outputData, inside, outside, channel, mMaxValue.host<float>(),
|
|
mSumValue.host<float>(), threadNum);
|
|
continue;
|
|
}
|
|
MNNUnpackC4(outputData, inputData, areaInput, inputTensor->channel());
|
|
_softmaxCommon(outputData, tempData, inside, outside, channel, mMaxValue.host<float>(), mSumValue.host<float>(),
|
|
threadNum);
|
|
MNNPackC4(outputData, tempData, areaInput, outputTensor->channel());
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
CPUSoftmax::CPUSoftmax(Backend *b, int axis) : MNN::Execution(b), mAxis(axis), mStorage(2), mNeedUnpackC4(false) {
|
|
// nothing to do
|
|
}
|
|
|
|
class CPUSoftmaxCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
auto axis = op->main_as_Axis()->axis();
|
|
if (axis < 0) {
|
|
axis = inputs[0]->dimensions() + axis;
|
|
}
|
|
return new CPUSoftmax(backend, axis);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUSoftmaxCreator, OpType_Softmax);
|
|
|
|
} // namespace MNN
|