MNN/source/backend/cpu/CPUTranspose.cpp

181 lines
6.3 KiB
C++

//
// CPUTranspose.cpp
// MNN
//
// Created by MNN on 2018/08/23.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUTranspose.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "core/Macro.h"
namespace MNN {
CPUTranspose::CPUTranspose(Backend* backend, DataType dataType) : Execution(backend) {
permDateType = dataType;
}
inline bool NonSingletonDimensionsAlign(const Tensor* input, const std::vector<int32_t>& permutation) {
int lastNonsingletonPermDim = -1;
for (int permDim : permutation) {
if (input->buffer().dim[permDim].extent == 1) {
continue;
}
if (permDim < lastNonsingletonPermDim) {
return false;
}
lastNonsingletonPermDim = permDim;
}
return true;
}
ErrorCode CPUTranspose::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const Tensor* input = inputs[0];
const Tensor* perm = inputs[1];
auto output = outputs[0];
const int dims = input->buffer().dimensions;
MNN_ASSERT(dims == perm->buffer().dim[0].extent);
std::vector<int32_t> permutation;
for (int i = 0; i < perm->buffer().dim[0].extent; i++) {
permutation.push_back(perm->host<int32_t>()[i]);
}
std::vector<int32_t> shape;
shape.resize(dims);
bool isIdentity = true;
std::vector<bool> bits(dims);
for (int i = 0; i < dims; ++i) {
const int32_t d = permutation[i];
MNN_ASSERT(0 <= d && d < dims);
bits[d] = true;
const auto dimSize = input->buffer().dim[d].extent;
shape.push_back(dimSize);
if (d != i) {
isIdentity = false;
}
}
for (int i = 0; i < dims; ++i) {
MNN_ASSERT(bits[i]);
}
const auto src = input->host<float>();
float* dst = output->host<float>();
if ((dims <= 1 || isIdentity)) {
memcpy(dst, src, input->size());
return NO_ERROR;
} else if (NonSingletonDimensionsAlign(input, permutation)) {
memcpy(dst, src, input->size());
return NO_ERROR;
}
if (2 == dims) {
MNN_ASSERT(permutation.size() == 2);
const int stride0 = input->stride(permutation[0]);
const int stride1 = input->stride(permutation[1]);
const int output0 = output->length(0);
const int output1 = output->length(1);
for (int i = 0; i < output0; i++) {
for (int j = 0; j < output1; j++) {
dst[i * output1 + j] = src[i * stride0 + j * stride1];
}
}
} else if (3 == dims) {
MNN_ASSERT(permutation.size() == 3);
const int stride0 = input->stride(permutation[0]);
const int stride1 = input->stride(permutation[1]);
const int stride2 = input->stride(permutation[2]);
const int output0 = output->length(0);
const int output1 = output->length(1);
const int output2 = output->length(2);
const int outStride0 = output->stride(0);
const int outStride1 = output->stride(1);
for (int i = 0; i < output0; i++) {
for (int j = 0; j < output1; j++) {
for (int k = 0; k < output2; k++) {
dst[i * outStride0 + j * outStride1 + k] = src[i * stride0 + j * stride1 + k * stride2];
}
}
}
} else if (4 == dims) {
MNN_ASSERT(permutation.size() == 4);
const int stride0 = input->stride(permutation[0]);
const int stride1 = input->stride(permutation[1]);
const int stride2 = input->stride(permutation[2]);
const int stride3 = input->stride(permutation[3]);
const int output0 = output->length(0);
const int output1 = output->length(1);
const int output2 = output->length(2);
const int output3 = output->length(3);
const int outStride0 = output->stride(0);
const int outStride1 = output->stride(1);
const int outStride2 = output->stride(2);
for (int i = 0; i < output0; i++) {
for (int j = 0; j < output1; j++) {
for (int k = 0; k < output2; k++) {
for (int m = 0; m < output3; m++) {
dst[i * outStride0 + j * outStride1 + k * outStride2 + m] =
src[i * stride0 + j * stride1 + k * stride2 + m * stride3];
}
}
}
}
} else if (5 == dims) {
MNN_ASSERT(permutation.size() == 5);
const int stride0 = input->stride(permutation[0]);
const int stride1 = input->stride(permutation[1]);
const int stride2 = input->stride(permutation[2]);
const int stride3 = input->stride(permutation[3]);
const int stride4 = input->stride(permutation[4]);
const int output0 = output->length(0);
const int output1 = output->length(1);
const int output2 = output->length(2);
const int output3 = output->length(3);
const int output4 = output->length(4);
const int outStride0 = output->stride(0);
const int outStride1 = output->stride(1);
const int outStride2 = output->stride(2);
const int outStride3 = output->stride(3);
for (int i = 0; i < output0; i++) {
for (int j = 0; j < output1; j++) {
for (int k = 0; k < output2; k++) {
for (int m = 0; m < output3; m++) {
for (int n = 0; n < output4; n++) {
dst[i * outStride0 + j * outStride1 + k * outStride2 + m * outStride3 + n] =
src[i * stride0 + j * stride1 + k * stride2 + m * stride3 + n * stride4];
}
}
}
}
}
} else {
MNN_PRINT("Transpose Only Support dimension <= 5!\n");
MNN_ASSERT(false);
}
return NO_ERROR;
}
class CPUTransposeeCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
return new CPUTranspose(backend, op->main_as_Transpose()->Tperm());
}
};
REGISTER_CPU_OP_CREATOR(CPUTransposeeCreator, OpType_Transpose);
} // namespace MNN